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Abstract

Portfolio management is the process of making decisions about investments and policies, match-
ing investments to objectives, asset allocation for individuals and institutions, and balance risk
against performance. Portfolio management seeks to determine strengths, weaknesses, oppor-
tunities and threats when allocation capital to debt, alternative investments, and domestic and
international equity by evaluating the trade-offs encountered in the attempt to maximize re-
turn for a given appetite of risk. Asset allocation schemes are in general divided into the two
sub-categories: strategic asset allocation and tactical asset allocation. Strategic asset allocation
focuses on long-term buy-and-hold investments. Contrary, tactical asset allocation is the process
whereby an investor regularly revise the composition of a portfolio in response to the changes in
the wider economy to generate excess returns and improve risk adjusted returns. Tactical asset
allocation strategies often hold a minor role in the strategic distribution of capital for pension
funds, endowment funds and other institutional investor.

This thesis presents optimization techniques and tools to help fund managers enhance returns
of their investments and better manage their risks when applying tactical asset allocation strate-
gies. In Addition, the core principals are highlighted for effectively guiding a quantitative tactical
investment strategy using different market inefficiencies and manage risks using stochastic pro-
gramming. Overall, the optimal investment portfolio is computed for a given objective function
and a number of constraints, which yield the maximum risk-adjusted return or maximum return
for a given target of risk.

Academics refer to the aforementioned decision-process as the portfolio optimization problem.
A classical approach to solving this problem is by applying the mean-variance model, which aims
to maximize expected return and minimize the variance of returns. However, as financial returns
are rarely normally distributed, this approach may yield counter-intuitive decisions. Instead, in
this thesis we focus on the empirical distribution using stochastic programming. Overall, this
thesis is a collection of scientific papers, where each chapter of the thesis focuses on different
aspects of applying quantitative tactical asset allocation. First chapter introduces tactical asset
allocation as a concept and discuss key elements when applying such strategies within the field of
quantitative finance. A special emphasis is put on the application of stochastic programming in
the risk management setting. The second chapter discuss the problem of parameter uncertainty
in connection to decision making and propose a selection process, whereby a number of assets
can be chosen without loosing the potential for diversification. This enables better estimation
of parameters, which in turn leads to significant out-of-sample excess return. We suggested that
the excess return are explained by a combination of avoiding sector concentration together with
choosing low-beta assets. The latter relates to the well-documented phenomenon called betting
against beta. In the third chapter, we show evidence of return predictability following the supply
chain of U.S. industry segments, and illustrate how this market abnormality can be incorporated
in a risk management framework to generate significant out-of-sample excess return. The fourth
chapter provides evidence of a different type of return predictability and illustrates the benefits
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of including commodities in an otherwise diversified equity portfolio by providing significant ex-
cess returns and risk reduction. Finally, the fifth chapter concludes on the findings and suggest
future research and improvements.

Sammenfatning (Danish)

Porteføljestyring er den proces hvorved der tages beslutninger vedrørende allokering og in-
vesteringspolitik, afklaring af investeringsm̊al for enkeltpersoner eller institutioner og afbalancer-
ing af risiko og afkast. Porteføljestyring søger at bestemme styrker, svagheder, muligheder og
trusler, n̊ar der allokeres kapital til investeringer i obligationer, alternative investeringer, og in-
denlandske og internationale aktier ved at analysere og imødeg̊akompromiser i et forsøg p̊aat
maksimere afkastet for en given risikoaversion. Investeringsstrategier kan overordnet inddeles i
to underkategorier: strategisk aktiv allokering og taktisk aktiv allokering. Strategisk aktiv al-
lokering fokuserer p̊alangsigtede køb-og-hold investeringer. Som modsætning s̊afokuserer taktisk
allokering af aktiver p̊aregelmæssigt at revidere sammensætningen af en portefølje som reak-
tion p̊aændringer i den bredere økonomi med henblik p̊aat generere merafkast og forbedre de
risikojusterede afkast. Taktiske strategier for aktiv allokering udgør ofte en mindre del af den
strategiske fordeling af kapital for pensionskasser, fonde og andre institutionelle investorer.

Denne afhandling præsenterer optimeringsteknikker og værktøjer til at forbedre afkast og
styre risici for porteføljeforvaltere som ønsker at gøre brug af taktisk aktiv allokering. Desu-
den fremhæves centrale principper for effektivt at lede en kvantitativ taktisk investeringsstrategi
funderet p̊auligheder i de underliggende markedsforhold og risikokontrol funderet i stokastisk
programmering. Samlet set, s̊asøger vi at finde den investeringsportefølje som giver det højeste
risikojusterede afkast eller afkast for en given risikoaversion, ud fra en objektiv funktion og et
sæt begrænsninger.

Akademikere refererer til den førnævnte beslutningsproces som porteføljeoptimeringsproblemet.
En klassisk tilgang til at løse dette problem er at anvende mean-variance modellen, som har til
form̊al at maksimere forventet afkast og minimere variansen af afkast. Men da finansielle afkast
sjældent er normalfordelte kan denne metode ofte give ulogiske investeringsbeslutninger. I stedet
fokuserer vi i denne afhandling p̊aden empiriske fordeling ved hjælp af stokastisk programmering.
Samlet set er afhandlingen en samling af videnskabelige artikler, hvor hvert kapitel af afhandlin-
gen fokuserer p̊aforskellige aspekter vedrørende kvantitativ taktisk aktiv allokering. Første kapi-
tel introducerer taktisk aktiv allokering som begreb, og diskuterer centrale elementer ved anven-
delse af s̊adanne strategier indenfor kvantitativ finans. I særdeleshed understreges anvendelsen
af stokastisk programmering ved risikostyringen. Andet kapitel diskuterer parameterusikkerhed i
forbindelse med beslutningsprocessen og foresl̊ar et udvælgelseskriterie, hvor en mindre del af de
tilgængelige aktiver udvælges uden at miste muligheden for at diversificere. Dette gør det muligt
at forbedre estimeringen af parametre, som igen fører til et signifikant merafkast. Vi forklarer
merafkastet som en kombination af at undg̊asektorkoncentration og udvælgelse af aktiver med
en lav beta værdi. Sidstnævnte refererer til et veldokumenteret fænomen kaldet Betting against
Beta. I det tredje kapitel viser vi, at der eksisterer afkastforudsigelighed for Amerikanske indus-
trisegmenter gennem deres supply-chain, og illustrerer hvordan denne markedsabnormalitet kan
indarbejdes i en ramme for risikostyring for at generere merafkast. Fjerde kapitel indeholder bev-
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isførelse for en anden type afkastforudsigelighed og illustrerer fordelene ved at inkludere r̊avarer i
en allerede veldiversificeret aktieportefølje for herved at forbedre afkast og mindske risiko. Femte
kapitel konkluderer p̊ade præsenterede resultater og foresl̊ar forbedringer og fremtidig forskning.
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Preface

This thesis has been prepared in fulfillment of the requirement for the Ph.D. degree at the Techni-
cal University of Denmark. The project has been carried out from February 2, 2014 to January
31, 2017, in the Division of Management Science, Department of Management Engineering,
Technical University of Denmark, under the supervision of associate professor Kourosh Marjani
Rasmussen and professor Alex Weissensteiner. This period includes four months at the Faculty
of Economics and Management, Free University of Bozen-Bolzano, as a visiting researcher. The
project was fully funded by the Technical University of Denmark. The dissertation consists of
three academic papers on different but related topics within tactical asset allocation. The thesis
starts with an overall introduction to the project, including the background and the motivation
for the research, the contribution, a summary of the papers and a discussion of the main results.
Afterwards, each chapter consists of one paper, each of which can be read independently. All the
papers have either been published or submitted to scientific journals within the area of operations
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Chapter 1

Introduction

In financial economics, the efficient-market hypothesis proposed by Eugene Fama states that
asset prices fully reflect all available information. A direct implication of this hypothesis would
be that it is impossible to outperform the market consistently on a risk-adjusted basis, as the
market prices immediately react to all new information or changes. Hence, active investing would
be meaningless as prices already reflect as much information as one could hope to obtain. Con-
trary to this hypothesis, Robert Shiller argues that market prices deviate from fundamentals as
people make mistakes and are subject to common biases that do not cancel out in aggregate,
e.g. humans make errors, panic, herd, anker, and get exuberant. Finally, Lasse Haje Pedersen
advocates [see Pedersen, 2015], that the truth is to be found somewhere in the middle, meaning
that financial markets are in a state of near-efficient equilibrium held in place by speculators cap-
italizing on momentary investment opportunities. This capitalization is often performed through
tactical asset allocation strategies.

The main focus of this thesis is on asset allocation that allows an investor to optimally
choose an investment portfolio according to his or her risk and return preferences. In particular,
an emphasis on tactical asset allocation is being made, which refers to the process whereby
an investor regularly revises the composition of a portfolio in response to changes in the wider
economic environment. Th problem is analyzed in the context of econometric modeling, and
optimization of parametric and non-parametric portfolio frameworks using different measures of
risk. Hence, tactical asset allocation is considered using a quantitative investment approach.

1.1 Predictability of Returns and Scenario Generation

Systematic tactical asset allocation strategies use a mathematical approach to systematically
exploit inefficiencies or temporary imbalances in the equilibrium values in or among different
asset classes. They are often based on known financial market anomalies (inefficiencies) that are
supported by academic and practitioner research, e.g. momentum or mean-reversal.

Weigel [1991] argues that a major driving force behind the application of quantitative tech-
niques to tactical asset allocation strategies has been the statistical evidence of predictability
of returns. In the case of asset returns conforming to the random walk hypothesis, the capi-
tal invested in each asset constituting an optimal investment portfolio should be held constant
over time, given an isoelastic utility function or mean-variance preferences. However, there exist
widespread evidence of predictability of returns for all major asset classes which contradicts the
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hypothesis, and a sine qua non of tactical asset allocation has become the exploitation of these
findings, leading to continuous changes of an investment portfolios to capture time-varying risk
premia and enhance risk adjusted returns.

1.1.1 Expected Returns

A large body of research investigates the existence of predictability of returns for different finan-
cial asset classes. Evidence of predictability for the U.S. equity market is illustrated by Campbell
[1987], who shows that the shape of the term structure of interest rates predicts stock returns.
This finding is further supported by Fama and French [1988, 1989], who find strong autocor-
relation for long-horizon predictions of stocks and bonds along with a clear relationship to the
business cycle. Ferson et al. [1991] discover that most of the predictability of stocks and bonds
is associated with sensitivity of economic variables. Hence, the stock market risk premium is
a good predictor for capturing variation of stock portfolios, while premia associated with the
interest rate risks capture predictability of the bond returns.

The predictability of returns is demonstrated in a similar way for other international equity
markets. Cutler et al. [1991] examine 13 different economies and find that returns tend to show
positive serial correlation on high frequency and weak negative serial correlation over longer
horizons. Bekaert and Hodrick [1992] investigate and characterize the predictable components in
excess returns on major equity and foreign exchange markets using lagged excess returns, divi-
dend yields, and forward premiums as predictors, and find a statistically significant relationship.
This is further supported by Ferson and Harvey [1993], who investigate predictability in returns
of the U.S. market, and its relation to global economic risks. Additionally, Solnik [1993] analyzes
whether exchange rate risk is priced in the international asset markets, and finds that equities
and currencies of the world’s four largest equity markets support the existence of a foreign risk
premium. Hjalmarsson [2010] uses the dividend-price and earnings-price ratios, the short inter-
est rate, and the term spread as predictors. He analyzes 20,000 monthly observations from 40
international markets, including 24 developed and 16 emerging economies. His results indicate
that the short interest rate and the term spread are robust predictors of the stock returns in
developed markets. Finally, Rapach et al. [2010] provide robust out-of-sample evidence of return
predictability, which is further supported by Henkel et al. [2011], Ferreira and Santa-Clara [2011],
and Dangl and Halling [2012]. The relevance of component return predictability for portfolio
management is investigated by Campbell et al. [2003], Avramov [2004], and Avramov and Wer-
mers [2006].

Predictability of returns can be observed not only in the equity and bond markets, but also
in the commodity markets. Here, the existence of predictability in returns is often explainable
by the cyclic nature of their underlying production. As agricultural commodities ought to follow
their own crop cycle which repeats the same seasonal patterns year after year, observed commod-
ity prices exhibit nonstationarities along the same seasonal lines. Crop cycle-related seasonalities
in agricultural commodities are documented by Roll [1984], Anderson [1985], Milonas and Vora
[1985], Kenyon et al. [1987], and Fama and French [1987]. Seasonality is also found in the energy
sector among fossil fuels, natural gas futures [see Brown and Yücel, 2008], and refined products
such as gasoline, heating oil and fuel oil futures [see Adrangi et al., 2001].

The predictability of returns is often included in the investment decisions using factor, vec-
torized autoregressive, or state-space models [see Cochrane, 2008, for an overview]. These frame-
works provide a convenient way for computing parameters to make point estimates for expected
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returns of considered assets. Though, these estimates seldom converge to the true values of the
underlying unknown stochastic process. Instead, they provide a qualified guess given a set of
assumptions.

1.1.2 Scenario Generation

Randomness in the underlying environment (in this case, asset prices) leads to uncertainty, which
can be characterized, albeit approximately, by a mathematical model and a probability distribu-
tion. The uncertainty is by no means resolved, but simply structured under a set of assumptions
to support decision making, by assigning some probability to the unknowns so that they become
known unknowns. In stochastic programming, these known unknowns are represented by sce-
narios, where a scenario is a realization of a multivariate random variable for the rates of return
of all the assets. A large variety of different methods have been suggested for the generation
of scenarios. They range from the simple historical approach, based on the assumption that
past realizations are representative of future outcomes, to more complex methods based on ran-
dom sampling from historical data (Bootstrap methods) or on randomly sampling from a chosen
distribution function of the multivariate random variable (Monte Carlo simulation) or, again,
forecasting methods [for an overview of different techniques, see Kaut and Wallace, 2003].

In general, a set of scenarios approximating a stochastic process of financial returns can be
described using an index s associated to each scenario, with s = 1, ..., S, where S is the total
number of scenarios. Given n assets, a scenario consists of n return realizations, one for each
asset. The s′th realization is then the rate of return of asset i as its realization under scenario
s. A portfolio’s expected return and risk is then be evaluated on S mutually exclusive scenarios
s = 1, ..., S, each of which occurring with probability ps

An inherent problem of scenario generation is the dimensionality of the approximation of the
continuous stochastic process. In order to get a good approximation of the underlying process,
a large number of scenarios are needed which in turn increases the size of the asset allocation
problem. Two overall contrasting approaches exist when addressing this problem, i.e. scenario
reduction techniques and moment matching. Both try to reduce the number of scenarios while
preserving the overall structure. While both schools have merits, Geyer et al. [2013] compare
the two methods in the context of financial optimization, and find (when ensuring the absence
of arbitrage in the scenarios) that moment matching provides superior solutions compared to
scenario reduction.

Several researchers and practitioners have used scenario generation techniques as a tool for
supporting financial decision making. The applicability of these techniques for financial purposes
is first recognized by Bradley and Crane [1972] and later by Mulvey and Vladimirou [1992] for
asset allocation. Nielsen and Zenios [1996] demonstrate decision making using scenario genera-
tion techniques for fixed income portfolio management, while a similar approach is applied for
insurance companies by Consiglio et al. [2001], Carino et al. [1994]. Asset-liability and financial
planning have been addressed in the scenario setting by Consigli and Dempster [1998], Golub
et al. [1995], Kusy and Ziemba [1986], Mulvey and Vladimirou [1992].

1.2 Asset Allocation

In the general case, asset allocation can be described as the process where an investor allocates
capital among various securities, thus assigning a share of capital to each. During an investment
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period, the portfolio generates a random rate of return. This results in a new value of the capital
(observed at the end of the period), increased or decreased with respect to the invested capital by
the average portfolio return. The distribution of capital among different assets is done to archieve
diversification or a desired return-risk profile consistent with the investor’s objective [see Sharpe,
1992]. Perold and Sharpe [1995] divide asset allocation schemes into the subcategories strategic
asset allocation and tactical asset allocation, where the main distinction lies in the length of
the forecast for expected returns and risk evaluations. Therefore, the changes to a tactical
managed portfolio happen more frequent than those made to a strategic managed one. Arnott
and Fabozzi [1988] elaborate on the definition, and characterize tactical asset allocation as the
process of actively seeking to enhance performance of an investment portfolio by opportunistically
changing the composition in response to the capital markets. Philips et al. [1996] provide a similar
definition, and define the objective as to obtain excess returns over a benchmark with possibly
lower volatility by varying exposure to assets in a systematic manner. Several methods have been
proposed in the literature to achieve this particular goal. The following section will highlight the
general concept in the setting of systematic tactical asset allocation, and provide an overview
over the most distinctive models.

1.2.1 Portfolio Optimization

In asset allocation, characterization of the future uncertainty by a set of scenarios of possible
outcomes does not provide value to the decision maker by itself, unless he is able to choose and
allocate among competing alternatives based on a set of preferences. Historically, theories of
such preferences have been normative, describing a certain set of principles for rational behavior.
The expected utility theory, first proposed by Bernoulli [1954] as a solution to the St. Petersburg
Paradox, and formalized by Von Neumann and Morgenstern [1945] into 4 key axioms (Complete-
ness, Transitivity, Independence, Continuity), addresses the problem of rational decision making.
Additional noteworthy mentions include Quiggin [1982], Gilboa and Schmeidler [1989] for rank
dependent utility and Zadeh [1965] for Fuzzy Logic.

A parallel strand of research seeks to depart from the theory of the utility function, and
instead undertake a more concrete notion by simply focusing on the concept of loss aversion. A
first attempt of quantifying risk as the loss beyond a certain threshold is the Safety-First criterion
suggested by Roy [1952] which aims at minimizing the probability of being below an investor’s
minimum acceptable return. Concurrently, the seminal work of Markowitz [1952] was proposed,
which provided a systematic framework for assembling a portfolio of assets such that the risk
exposure is minimized for a target expected return using a single period model. Here the risk
is defined according to the variance. The Markowitz model plays a crucial role within the field
of financial investment and has served as a basis for the development of financial portfolio theory.

Several other risk measures have been proposed as a direct result of Markowitz’s work, hereby
creating a family of bi-objective mean-risk models. Whereas the original model is a quadratic
programming problem [see Sharpe, 1971a], several attempts have been made to linearize the
portfolio optimization problem. Despite the algorithmic advances within quadratic programming
and hardware improvements over the last two decades [see Bertsimas and King, 2015], linear
models continue to be more desirable as real features are easier to implement, given that the
introduction of elements such as transactions costs and cardinality constraints involves integer
variables. Hereby significantly increases the computational complexity of the problem.

In order to guarantee that the portfolio takes advantage of diversification, no risk measure can
be a linear function of the portfolio shares. Nevertheless, a risk measure can be LP computable
in the case of discrete random variables, when returns are defined by their realizations under
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specified scenarios. The most prominent measures of risk found in the literature satisfying this
criteria are Absolute deviation, Minimum regret, Lower Partial Moment, Conditional Value at
Risk, and Conditional Drawdown at risk. These measures of risk can in general be divided into
two groups, where the first one belongs to the general Lp function space (together with variance),
while the remaining are threshold based measures.

Variance

Markowitz [1952] ushered the era of modern portfolio management with the introduction of the
Mean-Variance model. Here, the risk was considered in terms of variance with the underlying as-
sumption that the considered returns follow a normal or elliptical distribution. The optimization
problem may be posed as the following quadratic problem:

min 1
n

n∑
i=1

(
S∑
s=1

xi(ri,s − µi)
)2

s.t.
n∑
i=1

xiµi = C

n∑
i=1

xi = 1

xi ≥ 0,

where x represent the weights of the i = 1, ..., n assets, s = 1, ..., S are the number of scenario
points for the returns ri,s and µi are the forecasted expected returns. The problem effectively
minimizes portfolio variance subject to the forecasted portfolio return being equal to the target
C. No short sales allowed, which is enforced by the lower bound on the variable x. The symmetric
nature of variance, penalizing both up and downside deviations at the same rate, was critized by
Hanoch and Levy [1969] among others. This is illustrated in Figure 1.1

 

σ−σ

Figure 1.1: Distribution of returns where the variance is illustrated by a gray area
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Absolute Deviation

The mean absolute deviation was first proposed by Sharpe [1971b] as an aggregator of risk for
portfolio analysis. Konno and Yamazaki [1991] extend this study, and present and analyze the
complete portfolio optimization model based on this risk measure, which is coined the MAD
model. Yitzhaki [1982] addresses the same problem but from a different angle and introduces
the mean-risk model using Gini’s mean (absolute) difference as the risk measure. The absolute
deviation measure can in the general case be formulated as

1

n

m∑
s=1

∣∣∣∣ m∑
i=1

xi(ri,s − µi)
∣∣∣∣, (1.1)

which Konno and Yamazaki [1991] reduce to the following piece-wise linear problem

min 1
n

m∑
t=1

dt

s.t.
n∑
i=1

(ri,s − µi)xi ≤ ds
n∑
i=1

(ri,s − µi)xi ≥ −ds
n∑
i=1

xiµi = C

n∑
i=1

xi = 1

xi ≥ 0,

where ds represent the absolute deviations of the portfolio from its forecasted mean, forming a
vector of variables of size n (length of the scenario) to be optimized. Extensions to the model
have included the addition of skewness in Konno et al. [1993], and semi-absolute deviation first
suggested by Speranza [1993] who showed that the mean semi-deviation is a half of the mean
absolute deviation from the mean. Similar to the mean-variance model, the MAD model lacks
consistency with stochastic dominance relations. The mean absolute deviation is illustrated for
a return distribution in Figure 1.2

Minimum Regret

The Minimum regret or MiniMax model of Young [1998] aims to minimize the maximum loss a
portfolio may experience for a given set of scenarios. The measure of risk can be formulated as

max

( S∑
s=1

−rs,ixi
)

(1.2)
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Figure 1.2: Distribution of returns where the mean absolute deviation is illustrated by a gray
area, and the dotted lines are the variance

and as such is a very conservative criterion. The portfolio optimization model can be formulated
using the following LP formulation

min Mp

s.t.

Mp −
n∑
i=1

xiri,s ≤ 0 ∀s ∈ S
n∑
i=1

xiµi = C

n∑
i=1

xi = 1

xi ≥ 0,

where Mp is the objective minimization value representing the maximum loss of the portfolio
and is guaranteed to be bounded from above by the maximum portfolio loss as a result of the
first constraint. The maximum loss is illustrated for a return distribution in Figure 1.3
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Maximum Loss

Figure 1.3: Distribution of returns where the worst case scenario is illustrated to the far left.
The variance is shown as dotted lines.

Lower Partial Moment

Lower partial moment addresses the downside deviation below a certain threshold, contrary to
the symmetric variance measure. It was first suggested by Markowitz [1952] in a reference to
the semi-standard deviation. This was later formalized into a general class of measures by Stone
[1973], and presented in a systematic Lower Partial Moment (LPM) framework by Fishburn
[1977]. LPM is in the continuous case defined as

LPMa,τ =

∫ τ

−∞
(τ − x)af(x)dx (1.3)

where a is a positive number representing the rate at which deviations below the threshold τ are
penalized and f is a density function. In the discrete case, LPM may be represented as (The
Upper Partial Moments (UPM) can be defined similarly)

LPMa, τ(x) = E[max(τ − x, 0)a]. (1.4)

The measure is often standardized in the context of portfolio optimization by raising it to the
power of 1

a . Bawa and Lindenberg [1977], Bawa [1978], Fishburn [1977] show that LPM satisfy
stochastic dominance for all degrees of a. The portfolio optimization problem in the discrete
setting can be posed as follows:
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min

(
1
S

S∑
s=1

max

(
0, τ −

(
n∑
i=1

xiri,s

))a)1/a

s.t.
n∑
i=1

xiµi = C

n∑
i=1

xi = 1

xi ≥ 0.

The LPM model concides with the shortfall probability or Safety-First model of Roy [1952] for
a = 0. For a = 1, LPM represents the below target shortfall and a = 2 is the shortfall variance,
which is equivalent to the central semi-variance when τ = E(x). When a = 1, then a LP
formulation exists and is given by

min 1
n

S∑
s=1

ds

s.t.

τ −
n∑
i=1

xiri,s ≤ ds
n∑
i=1

xiµi = C

n∑
i=1

xi = 1

xi, ds ≥ 0,

with regards to the choice of a threshold variable τ . The choice of τ may be motivated by the
investor’s minimum acceptable return, the risk free rate or any other meaningful benchmark.
The lower partial moments of a distribution is illustrated in Figure 1.4

 

σ−σ

Figure 1.4: Distribution of returns where the lower partial moments are illustrated using a gray
area. The variance is shown as dotted lines.
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Conditional Value at Risk

The heart of risk management is the mitigation of losses, and especially the severe ones which
can potentially put the entire invested capital at risk. Conditional Value-at-Risk quantifies the
losses in the tail of a distribution as mean shortfall at a specified confidence level [Rockafellar and
Uryasev, 2002]. In the case of continuous distributions, CVaR is known also as Expected tail loss
(ETL), Mean Shortfall [Mausser and Rosen, 1999], or Tail Value-at-Risk [Artzner et al., 1999].
CVaR is proposed in the literature as a superior alternative to the industry standard Value-at-
Risk (VaR) by conditioning on the losses in excess of VaR, hereby deriving a more appropriate
estimation of the significant losses than VaR, i.e. for the confidence level α, the CV aRα is
defined as the mean of the worst (1-α)·100% scenarios. Furthermore, it is consistent with second
order stochastic dominance shown by Ogryczak and Ruszczyński [2002]. In case of a discretized
state space it leads to LP solvable portfolio optimization models [Rockafellar and Uryasev, 2002],
and in the limited settings where VaR computations are tractable, i.e., for normal and elliptical
distributions, CVaR maintains consistency with VaR by yielding an identical solution [Keating
et al., 2001]. CVaR can be defined as

CV aRα(X) = ETLα = E(−X| −X > V aRα(X)), (1.5)

where V aRα(X) is defined as V aRα(X) = inf{x ∈ R : P (X ≤ x) ≥ α}. In the discrete setting,
CVaR may be adressed using the following model

min ξα +
1

Sα

S∑
s=1

y+s

s.t. −
n∑
i=1

xiri,s − ξα ≤ y+s

n∑
i=1

xiµi = C

n∑
i=1

xi = 1

xi, y
+
s ≥ 0,

(1.6)

where y+s is an auxiliary variable used for the linearization of the CVaR formulation and ξα is
the Value-at-Risk. The Conditional Value at Risk for a distribution is illustrated in Figure 1.5.

Conditional Drawdown at Risk

Conditional Drawdown at Risk (CDaR) extends the idea of CVaR and conditions on the α worst
drawdowns over a path of cumulative returns. Here, a drawdown is measured on the cumulative
returns of a portfolio rule from the time a decline begins to when a new high is reached, and is
illustrated in Figure 1.6. This measure is strongly path dependant, which becomes a problematic
feature as there does not exist a closed form solution for the distribution of this measure with the
exception of a Brownian motion with zero drift [see Douady et al., 2000]. Following Chekhlov
et al. [2005], the problem may be posed as the following LP
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VaR

CVaR

Figure 1.5: Distribution of returns where the α worst scenarios constituting CVaR is illustrated
using a gray area. The variance is shown as dotted lines.

min v + 1
Sα

S∑
s=1

zs

s.t. zs − us + v ≥ 0
n∑
i=1

xiri,s + us − us−1 ≥ 0

u0 = 0
n∑
i=1

xiµi = C

n∑
i=1

xi = 1

xi, zs, ui ≥ 0,

(1.7)

where z is an auxiliary vector of variables of the conditional drawdowns, u the auxiliary vector of
variables to model the cumulative returns and v represents the Drawdown at Risk at the quantile
level α.

1.2.2 Coherency

Irrespective of the type of risk measure, the general reward-risk approach has proven popular
both academically and in the industry as it enables preferences to be summarized in a few
scalar parameters, e.g. mean and variance of returns. Formal qualifications of properties of risk
measures were first defined in the seminal papers by Artzner et al. [1999] on risk and Rockafellar
et al. [2006] on deviation, where the latter established the connection between the two.

Consider the probability space Ω, δ, P , where P is the probability on the δ measurable subsets
of Ω. Rockafellar et al. [2006] define a set of axioms, which are fulfilled in the linear space L2, that
deviation measures should satisfy. Artzner et al. [1999] provide equivalent ’coherent’ risk measure
functionals (δ : L2Ω) → (−∞,∞] and argue that the following axioms should be satisfied:

1. δ(C) = −C ∀ constants C
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Figure 1.6: Cumulative returns where the maximum drawdown is illustrated as a vertical dashed
line between a peak and the subsequent.

2. δ(λX) = λδ(X) ∀ X and λ > 0

3. δ(X +X ′) ≤ δ(X) + δ(X ′) ∀ X and X ′

4. δ(X) ≤ δ(X ′) whenever X ≥ X ′,

where 1. is the translation invariance property, 2. is positive homogeneity, 3. subadditivity
property and 4. the monotonicity property. More concrete, 1. implies that adding a constant to
a set of losses does not change the risk, 2. that holdings and risk scale by the same linear factor,
3. that portfolio risk cannot be more than the combined risks of the individual positions, and 4.
that larger losses equate to larger risks. The different presented risk measures do not all satisfy
the defined properties, and their characteristics are summarized below.

Variance S.D. MAD MiniMax CVaR CDaR LPMτ = c LPMτ = µ
Scaling TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Location 1 TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
Location 2 FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE
Subadditivity FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE

The four axioms refer to

1. Scaling f(bX) = 1
bf(X)

2. Location 1 f(a+X) = f(X)

3. Location 2 f(a+X) = f(X) + a

4. Subadditivity f(X1) + f(X2) ≥ f(X1 +X2),

where f is some risk measure, b a positive scalar and a some constant ∈ R . The scaling property
is shared by all measures, being a feature of their underlying constituent functions. Variance,
S.D., and MAD are location invariant (Location 1) as they are all deviation measures, meaning
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that they are calculated after centering. Variance is not subadditive, as the square function is
known to be superadditive, contrary to standard deviation which subadditive. CVaR, CDaR,
and LPM are not deviation measures and are therefor not location invariant, but do have location
property (Location 2), with the exception of CDaR which is path dependent. Interestingly, LPM
is subadditiv only when the threshold is equal to the mean of the expected returns [see Brogan
and Stidham Jr, 2005].

1.2.3 Optimal Financial Portfolios

The bi-objective decision process optimizing the expected return and risk can take advantage of
the convexity of the efficient frontier to perform a trade-off analysis between the two considered
matters. Having assumed a trade-off coefficient λ between the risk and the mean, also called the
risk aversion coefficient, one may directly compute and evaluate the function µ(x) − λδ(x) and
find the optimal portfolio by solving the following problem:

max{(1− λ)µ(x)− λδ(x)}. (1.8)

Recursively increasing the value of the parameter λ ∈ [0, 1] allows for the generation of a series
of optimal portfolios for different levels of risk aversion which overall span the efficient frontier.
In the context of mean-variance modeling, the technique was introduced by Markowitz [1959] as
the so-called critical line approach. Due to convexity of a given risk measure δ(x) with respect
to x, λ ≥ 0 provides a parameterization of the entire set of the µ/δ-efficient portfolios. Hence,
the bounded trade-off 0 ≥ λ ≥ 1 in the Markowitz-type mean risk model corresponds to the
complete weighting parameterization of the model. An alternative approach looks for a risky
portfolio offering the maximum increase of the mean return with respect to a risk-free investment
opportunity. Namely, having given the risk-free rate of return rf one seeks a risky portfolio x
that maximizes the ratio (µ(x) − rf )/δ(x). This leads us to the following ratio optimization
problem:

max
µ(x)− rf
δ(x)

. (1.9)

This particular problem bears special importance when considering the classical Tobin’s two-
fund separation theorem [see Tobin, 1958]. The optimal solution of the problem is usually referred
to as the tangency portfolio or the market portfolio and coincides with the maximization of the
Sharpe ratio [Sharpe, 1966], where the Capital Market Line (CML) is a line drawn from the
intercept corresponding to rf and that passes tangent to the mean-risk efficient frontier. Any
point on this line provides the maximum return for each level of risk. The tangency portfolio
is the portfolio of risky assets corresponding to the point where the CML is tangent to the ef-
ficient frontier. Unfortunately, no analytical solution exists for this problem when bounded by
a set of constraints, and one would have to use non-linear optimization or to solve the problem
many times for different λ values in order to find the tangency portfolio. Though, in the spe-
cial case where µ and δ are LP computable measures (the efficient frontier is continuous and
non-decreasing), then the original non-linear problem can be transformed into a corresponding
linear one using fractional programming [see Mansini et al., 2003, Stoyanov et al., 2007]. This
enables the computation of the optimal risk-return portfolio by solving a single linear model, and
furthermore provides the means for adding additional features in the constraints. The general
formulation can be defined as
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max
n∑
i=1

xiµi − τrf
s.t. δ(xiri,s − τrf ) ≤ 1

n∑
i=1

xi = τ

xi ≥ 0,

(1.10)

where δ is some risk function evaluated on the scenario returns ri,s. µ is the expected returns
for asset i and scenario s, and τ is an auxiliary scaling variable introduced as part of the linear-
fractional programming approach. The optimal solution for the original decision space can be
obtained by dividing the optimal portfolio x∗i with the scaling variable τ , i.e. wi = x∗i /τ .

1.3 Thesis Structure

This dissertation is organized around three papers where each addresses different aspects related
to tactical portfolio optimization and provides novel contributions to the literature.

Chapter 2: Feature Selection for Portfolio Optimization

This paper addresses the problem and impact of parameter uncertainty related to asset allo-
cation decisions. Most portfolio selection rules rely on parameters based on sample estimates
from historic data. However, the mean-variance model has been shown to perform poorly out-
of-sample when using sample estimates of the mean and covariance matrix from historic returns.
Moreover, there is a growing body of evidence that such optimization rules are not able to beat
simple rules of thumb, such as 1/N [see DeMiguel et al., 2009, for an overview]. A major cause
for these findings has been attributed to uncertainty in the estimated parameters. A strand of
literature addresses this problem by improving the parameter estimation and/or by relying on
more robust portfolio selection methods. In this paper, we propose a method for reducing the
asset menu as a preprocessing stage for the portfolio selection, hereby mitigating the problem of
parameter uncertainty to fewer parameters. The feature selection method works independently
of the chosen portfolio selection rule, and can therefore be applied to any type of systematic
risk averse asset allocation. We show that we are able to preserve most of the diversification
benefits from the original asset universe, while alleviating the parameter estimation problem. To
further emphasize these findings, we conduct out-of-sample back tests to show that in most cases
different well-established portfolio selection rules applied on the reduced asset universe are able
to improve alpha relative to different prominent factor models.

Novel contribution: The paper makes four contributions to the literature on clustering in
portfolio optimization. First, our out-of-sample back tests are based on long and well-known
time series. Specifically, we use the value weighted 49 industry portfolios provided by Kenneth
French as well as the constituting stocks of the S&P 500. For both data sets, we use monthly
returns from 1970 to 2013. Second, in addition to the classical minimum-variance portfolio and
the tangency portfolio, we consider also the more advanced portfolio selection rules suggested by
Kan and Zhou [2007] and Tu and Zhou [2011]. We compare pairwise the results with and without
feature selection. Noteworthy, the application of feature selection allows the use of these portfolio
selection rules on data sets with more assets than observations. Third, in line with Kritzman
et al. [2010] we highlight the importance of the length of the observation period by presenting
back test results for rolling windows of 5, 10, 15 and 20 years. Finally, we base our assessment on
the alpha relative to the most prominent factor models, such as CAPM, the Fama-French Three
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Factor model, and the Fama-French-Carhart Four Factor model. As a main result, we show that
for most test cases the performance of the reduced asset universe improves. In particular, we
show that the alpha of the equal weight (1/N) strategy also benefits from reducing the asset
menu.

Chapter 3: Portfolio Selection under Supply Chain Predictability

The second paper investigates the existence of cross-industry predictability of returns through
an econometric study. Using empirical data, we analyze whether lagged returns of stocks from
one industry predict those of another in the same market. The hypothesis takes its origin in the
works of Shiller and Sims, who both argue that investors are subject to an attention span which
has the implication that not all information is incorporated in the market instantaneously, but
with a time lag. Our hypothesis is that industries are related through the supply-chain but do
not immediately share information with each other. This predicament gives rise to return pre-
dictability. We analyse this question through a VAR process and find downstream predictability
in the supply chain along with autocorrelation. Furthermore, we address the economic relevance
of this finding in an out-of-sample portfolio setting where we assign weights according to the
maximization of the STAR ratio [see Martin et al., 2003]. The STAR ratio is equivalent to the
Sharpe ratio where the risk function is evaluated in terms of Conditional Value at Risk. We
compare the results of estimating expected returns using a VAR process and a Brownian motion.
The latter is used to eliminate the effect of predictability. We find that the cross-industry pre-
dictability of returns, in addition to being statistically significant, is also economically relevant,
which amounts to significant out-of-sample excess returns, and a noteworthy increase in Sharpe
ratio.

Novel contribution: We show in this paper that some industries tend to drive the returns
of others, which results in return predictability. Our contribution to the literature is twofold,
but can overall be summarized as rigorous analysis of the magnitude of the predictive behavior
of certain industry segments on the supply chain across the U.S. economy. First, we provide a
non-parametric mapping of the significant relations between different industry segments in order
to uncover lead and lagged returns on a monthly basis using a VAR process. Second, we analyse
the predictability in an out-of-sample portfolio selection setting to test if the predictability is
economically significant. Here, we optimize a portfolio according to the STAR ratio. We compare
the results based on a vector autoregressive process to that of using a Brownian motion for
estimating expected returns, and show that our hypothesis holds true both in-sample and out-
of-sample.

Chapter 4: Portfolio Optimization of Commodity Futures with Seasonal
Components and Higher Moments

The third paper addresses the implication of including commodities in a traditional well-diversified
equity portfolio. The literature suggests that there exist in-sample diversification benefits of
including commodities in portfolio optimization, but that these benefits are not preserved out-
of-sample. We provide an extensive in-sample study of the seasonality in returns, risk-return
profiles and diversification characteristics of a broad range of different commodity futures. We
find that there exists statistical significant evidence of seasonality, and hereby predictability, in
the considered non-metal commodities and gold. We address the same setting in an out-of-sample
analysis by constructing portfolios of ten commodities and a stock index using the classical tan-
gency mean-variance model and the maximum Omega ratio model. The Omega ratio is the ratio
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between the first order upper and lower partial moments. We suggest using Shieve bootstrap-
ping for the estimation of the expected return and risk functions to control for the seasonality.
We show that the predictability in commodity returns should be considered, and leads to sig-
nificant excess return and increase in Sharpe ratio. Furthermore, our results confirm the poor
out-of-sample performance of including commodities in a well-diversified equity portfolio, when
seasonality is not considered.

Novel contribution: This paper adds to the existing literature on the role of commodities in
portfolio optimization. We identify four novel contributions in this paper. First, we analyze a
large basket of commodities over a longer time horizon than usually presented in the literature
(1975.01 - 2014.12). Second, we provide a rigorous analysis of the empirical distribution of the
Sharpe ratio of various commodity futures along with the impact of seasonality in commodity
returns on the allocation of assets in an in-sample mean-variance setting. Thirdly, we propose
to use the Omega ratio in portfolio optimization of commodities in order to account for higher
order statistical moments. Fourthly, we confirm that the mean-variance model performs poorly
out-of-sample for optimizing a basket of commodities when using sample estimates, and provide
evidence that a main course for this result is the negligence of seasonality in the parameter
estimation process when appropriate.

Chapter 5: Conclusion

Finally, I summarize my findings, conclude, and gives directions towards future research.
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Abstract: Most portfolio selection rules based on the sample mean and co-
variance matrix perform poorly out-of-sample. Moreover, there is a growing
body of evidence that such optimization rules are not able to beat simple rules
of thumb, such as 1/N. Parameter uncertainty has been identified as one ma-
jor reason for these findings. A strand of literature addresses this problem by
improving the parameter estimation and/or by relying on more robust port-
folio selection methods. Independent of the chosen portfolio selection rule, we
propose using feature selection first in order to reduce the asset menu. While
most of the diversification benefits are preserved, the parameter estimation
problem is alleviated. We conduct out-of-sample back-tests to show that in
most cases different well-established portfolio selection rules applied on the re-
duced asset universe are able to improve alpha relative to different prominent
factor models.

Keywords: Portfolio Optimization, Parameter Uncertainty, Feature Selec-
tion, Agglomerative Hierarchical Clustering

2.1 Introduction

The seminal work of Markowitz [1952] has inspired a lot of work in the field of asset allocation.
However, the solutions obtained by such techniques are usually very sensitive to the input pa-
rameters [see e.g. Best and Grauer, 1991] with the consequence that estimation errors lead to
unstable and extreme positions in single assets. Chopra and Ziemba [2011] are one of the first to
quantify the consequences of misspecified parameters in asset allocation decisions. Specifically,
they illustrate that in their setting errors in expected returns are about ten times more important
than errors in variances and covariances. Furthermore, in addition to the general consensus that
expected returns are notoriously difficult to predict, Merton [1980] shows that even if the true pa-
rameters were constant, very long time series would be required to estimate expected returns in a
reliable way. As a consequence, a trading strategy based on the sample minimum variance port-
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folio, which completely abstains from estimating expected returns, shows a better risk-adjusted
performance than many other portfolio selection rules [see e.g. Haugen and Baker, 1991, Clarke
et al., 2006, Scherer, 2011]. Others propose different techniques to alleviate the problem of esti-
mating expected returns. Jorion [1986] considers explicitly the potential utility loss when using
sample means to estimate expected returns. In order to minimize this loss function, he uses
Bayes-Stein estimation to shrink the sample means toward a common value. A simulation study
shows that this correction provides significant gains. Black and Litterman [1992] argue that the
only sensible “neutral” expected returns are those that would clear the market if all investors
had identical views. Hence, the natural choice are the equilibrium expected returns derived from
reverse optimization using the current market capitalization. Having these “neutral expected
returns” as a starting point, they illustrate how to combine them with an investor’s own view in
a statistically consistent way.

Kan and Zhou [2007] show that there is a very significant interactive effect between the
estimation of the parameters and the ratio of the number of assets to the number of observations.
If the number of assets is small compared to the number of observations, then the estimation
of expected returns is more important [in line with Chopra and Ziemba, 2011]. However, when
this fraction grows, then estimation errors in the sample covariance grow too, and may become
more severe in terms of utility costs than the estimation errors in expected returns. Furthermore,
when the number of assets exceeds the number of observations, the sample covariance matrix is
always singular (even if the true covariance matrix is known to be non-singular). Many papers
address the problem of estimating the covariance matrix from limited sample data.

Ledoit and Wolf [2003a, 2004, 2003b], Ledoit et al. [2012] propose using the “shrinkage”
technique in order to pull extreme coefficients in the sample covariance matrix, which tend
to contain a lot of error, towards more central values of a highly structured estimator. They
derive the optimal shrinkage intensity in terms of a loss function, and they suggest using factor
models1 or constant correlation models as structured estimators. Given that weight constraints
improve the performance of mean-variance efficient portfolios, Jagannathan and Ma [2003] study
the short-sale constrained minimum-variance portfolio. They show that the optimal solution
under short-sale constraints corresponds to the optimal solution of the unconstrained problem
if shrinkage is used to estimate the covariance matrix, i.e. there is a one-to-one relationship
between short-sale constraints and the shrinkage technique. DeMiguel et al. [2009a] generalize
these results by solving the classical minimum-variance problem under norm-constrained asset
weights. They show that their setting nests the shrinkage technique of Ledoit and Wolf [2003a,
2004] and Jagannathan and Ma [2003] as special cases. Given that for more volatile stocks the
parameter estimation risk is higher, Levy and Levy [2014] propose two variance-based constraints
to alleviate the problem of parameter uncertainty. First, the Variance-Based Constraints on the
single weights, which are inversely proportional to the sample standard deviation of each asset.
Second, the Global Variance-Based Constraints, where instead of sharp boundary constraints
on each stock a quadratic “cost” is assigned to deviations from an equally weighted portfolio.
Comparing ten optimization methods, they find that the two new suggested methods typically
yield the best performance in terms of Sharpe ratio.

Another method to mitigate the estimation problem uses more portfolios than those proposed
by the classical two-funds Tobin separation theorem. Kan and Zhou [2007] suggest adding a
third risky fund to the risk-free asset and to the sample tangency portfolio to hedge against
parameter uncertainty. In particular, under the assumption of constant parameters, they show
that a portfolio which optimally combines the risk-free asset, the sample tangency portfolio (TP)
and the sample global minimum-variance portfolio (MVP) dominates a portfolio with just the
risk-free asset and the sample tangency portfolio.

1See Kritzman [1993] who compares factor analysis and cross-sectional regression for that purpose.
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The most extreme approach to address the problem of parameter uncertainty is to ignore all
historical observations and to invest equally in the available assets. Such a strategy is known as
the 1/N rule. Duchin and Levy [2009] use the 30 Fama-French industry portfolios (2001–2007)
to compare the 1/N rule against a Markowitz mean-variance rule under short-sale constraints.
They illustrate that for a low number of assets (below 25) the 1/N rule provides a higher average
out-of-sample return. Only if all 30 assets are traded, then the classical optimization approach
outperforms the 1/N rule slightly. DeMiguel et al. [2009b] compare 14 portfolio selection rules
across seven empirical datasets and show that none is consistently better out-of-sample than
the 1/N rule. Furthermore, under the assumption of constant parameters, they show that time-
series of extreme length (more than 6000 months for 50 assets) are necessary to beat the 1/N
benchmark.

Given the results of DeMiguel et al. [2009b], Tu and Zhou [2011] combine the 1/N rule
with four other well-known portfolio selection rules. Among others, they extend the Kan and
Zhou [2007] model and propose adding the equally weighted 1/N portfolio as a fourth fund in
an optimal way to reduce the estimation error. The MVP and the 1/N portfolio are natural
candidates: While the MVP does not depend on expected returns, for the 1/N portfolio neither
expected returns nor a covariance matrix have to be estimated.2

The results given by DeMiguel et al. [2009b] raise serious concerns about portfolio optimiza-
tion altogether. In defense of optimization, Kritzman et al. [2010] argue that most studies rely on
too short samples for estimating expected returns, which often yields implausible results. They
show that when estimations of expected excess returns are based on long-term samples, then
usually optimized portfolios outperform equally weighted portfolios.

To sum up: Many of the aforementioned papers illustrate that the problem of parameter
uncertainty increases with the number of assets [see e.g. Kan and Zhou, 2007]. Different data
mining techniques such as factor models [see e.g. Kritzman, 1993], shrinkage of the mean [see
e.g. Jorion, 1986] and shrinkage of the covariance [see e.g. Ledoit and Wolf, 2003a, 2004] are
proposed to alleviate the problem of the parameter estimation. Under the assumption of con-
stant parameters, extending the observation period improves the performance of optimization
based portfolio rules [see e.g. DeMiguel et al., 2009b, Kritzman et al., 2010]. However, whether
parameters are really constant over time is questionable, which suggests that simply expanding
the observation period might not be the best strategy in practice.

Compared to the above mentioned literature, in this paper we propose using feature selec-
tion by agglomerative hierarchical clustering. Based on correlation, we create groups of assets
such that the similarity within a cluster and the dissimilarity between different clusters is max-
imized. From each group we select then one representative asset to construct a smaller but yet
comprehensive enough universe.3 As the representative asset we use the medoid, whose average
dissimilarity to all the objects in the cluster is minimal. While the reduced asset menu facilitates
the estimation of the parameters, the chosen assets still allow to benefit from diversification. Our
choice is motivated by previous studies. Tola et al. [2008] show that clustering algorithms can
improve the reliability of the portfolio in terms of the ratio between predicted and realized risk.
Lisi and Corazza [2008] use clustering for a practical portfolio optimization task under cardi-
nality constraints. They use different distance functions and illustrate that in general clustering
improves the out-of-sample performance compared to a benchmark. Nanda et al. [2010] compare
different clustering techniques (as K-means, Fuzzy C-means, Self Organizing Maps) for portfolio
management in the Indian market and report benefits compared to the benchmark (the Sensex
index).

2For the rest of the paper, when referring to the Tu and Zhou [2011] strategy, we mean the optimal combination
of 1/N with Kan and Zhou [2007].

3In the following we use the term “feature selection” as synonym for “hierarchical clustering”.
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The present work makes four contributions to the literature on clustering in portfolio op-
timization. First, compared to the above mentioned papers, our out-of-sample back-tests are
based on long and well-known time series. Specifically, we use the value-weighted 49 industry
portfolios provided by Kenneth French4 as well as the constituent stocks of the S&P 500. For
both data sets, we use monthly returns from 1970 to 2013. Second, in addition to the classi-
cal minimum-variance portfolio and the tangency portfolio, we consider also the more advanced
portfolio selection rules suggested by Kan and Zhou [2007] and Tu and Zhou [2011]. We compare
pairwise the results with and without feature selection.5 Furthermore, feature selection allows to
use these portfolio selection rules also on data sets with more assets than observations. Third,
in line with Kritzman et al. [2010] we highlight the importance of the length of the observation
period by presenting back-test results for rolling windows of 5, 10, 15 and 20 years. Finally, we
base our assessment on the alpha relative to the most prominent factor models, such as Fama
and French [1993] and Carhart [1997]. As a main result, we show that for most test cases the
performance of the reduced asset universe improves. In particular, we show that the alpha of
the 1/N strategy also benefits from reducing the asset menu. As the 1/N rule is not prone to
parameter estimation errors, this result might be counterintuitive. We explain this finding with
other beneficial properties of feature selection. First, in addition to alleviating the problems due
to parameter estimation, the concentration risk of a portfolio is also reduced. To illustrate this
point, consider the fact that over 20% of the stocks in the S&P 500 are from the technology
sector. As a result, the 1/N portfolio has high concentration risk in this sector. Feature selection
forms groups such that the intra-group similarity and the inter-group dissimilarity is maximized,
i.e. similar stocks are allocated to the same group. By choosing then a representative asset out of
each group such sector-concentration risks are mitigated. Second, we show that for appropriate
observation periods feature selection reduces the beta of the 1/N portfolio, which relates to the
“betting-against-beta” idea proposed by Frazzini and Pedersen [2014].

The paper is structured as follows. Section 2 summarizes the classical portfolio optimization
techniques which are used in this paper. Section 3 offers a more detailed explanation of how we
use feature selection for the problem at hand. Section 4 describes the data and the results of
using feature selection in practice, and Section 5 concludes.

2.2 Classical Mean-Variance Optimization

Portfolio selection according to Markowitz is based on the assumption of multivariate normal
asset returns. An investor, faced with the decision on how to allocate funds to N risky and one
riskless asset, optimizes the trade-off between the expectation and the variance of the portfolio
returns. This preference can be formulated as

max
w

wᵀµ− λ

2
wᵀΣw,

where w = (w1, ..., wi, ..., wN )ᵀ represents the weights allocated to each risky asset in the portfo-
lio, µ is the vector of expected excess returns over the risk free rate, λ denotes the risk aversion
coefficient, and Σ is the variance-covariance matrix. Consequently, the difference 1 − 1ᵀw is
invested in the riskless asset.

In practice the parameters µ and Σ are unknown, i.e. the portfolio optimization has to be
conducted under parameter uncertainty. Estimation errors can have a substantial influence on

4see http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
5Given the focus of this paper, we want to point out that the proposed investigation is not intended as a horse

race between the different portfolio selection rules.
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the out-of-sample performance of the model, and may lead to solutions that are far away from
the true optimal portfolios [see DeMiguel and Nogales, 2009]. In order to alleviate parameter
uncertainty, Kan and Zhou [2007] propose a three-fund rule, which, in addition to the risk-free
asset and the tangent portfolio, engages a third risky portfolio to hedge against the estimation
risk. Furthermore, Tu and Zhou [2011] extend the three-fund rule and introduce the 1/N portfolio
as a fourth portfolio.

DeMiguel et al. [2009b] show with a simulation study that the impact of parameter uncertainty
on the performance of optimized portfolios depends heavily on the number of included assets.
Given constant parameters, they illustrate that very long time series are needed to estimate µ and
Σ precisely enough to outperform an equally weighted portfolio. In reality, however, parameter
values may vary over time, i.e. simply expanding the estimation window might induce the risk
of using outdated observations.

Therefore, instead of simply expanding the window for the parameter estimation, in this
paper we suggest a preliminary screening of the assets considered for optimization to reduce
the dimensionality of the parameter estimation problem, and hereby improve the out-of-sample
quality of the results.

In order to assess the performance of feature selection, we compare pairwise the results of five
different portfolio rules with and without reduction of the asset universe. More specifically, these
asset allocation rules are the global minimum variance portfolio, the tangency mean-variance
portfolio, the three-fund portfolio, the four-fund portfolio, and the 1/N portfolio. A short pre-
sentation of them is provided below.

Global Minimum Variance Portfolio

The minimum variance portfolio is a special case in the mean-variance portfolio framework, where
the combination of risky assets is chosen such that the total variance of the portfolio returns is
minimized, that is

min
w

wᵀΣw

s.t. 1ᵀw = 1.

As this rule relies only on the estimation of the covariance matrix of asset returns, and ignores the
expected returns, it is less prone to estimation errors as fewer parameters have to be estimated.
Analytically, the weights of the minimum variance portfolio can be expressed as

w∗MV =
Σ−11

1ᵀΣ−11
. (2.1)

Mean-Variance Tangency Portfolio

Tobin [1958] expands Markowitz’ seminal work for a risk-free asset and shows that the asset
allocation task results in maximizing the Sharpe ratio of the portfolio

max
w

wᵀµ√
wᵀΣw

s.t. 1ᵀw = 1.

Thereafter, dependent on the investor’s risk aversion, a combination between the resulting tan-
gency portfolio and the risk-free asset is chosen. Analytically, the weights of the tangency
portfolio are given by

w∗TP =
Σ−1µ

1ᵀΣ−1µ
. (2.2)
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The Three-Fund Rule

If the true mean and covariance of asset returns could be estimated precisely, as assumed in
theory, then the two-fund separation would hold perfectly. However, when the parameters are
unknown, the tangency portfolio is obtained with estimation errors. Intuitively, by using an
additional risky portfolio the estimation problem can be alleviated. Kan and Zhou [2007] propose
using the global minimum-variance portfolio as a third fund. As the estimation errors of the
minimum variance portfolio and the tangency portfolio are not perfectly correlated, an optimal
combination of them allows to improve the out-of-sample performance. The non-normalized
weights of the combined portfolios are given by

wKZ =
c3
γ

(
cΣ−1µ+ fΣ−11

)
, (2.3)

where c and f are chosen optimally to maximize the expected utility of a mean-variance investor

given the relative risk aversion parameter γ and the constant scalar c3 = (T−N−1)(T−N−4)
T (T−2) . The

allocation of funds to each of the risky portfolios depends on the number of assets N and the
length of the estimation window T . The more severe the parameter estimation problem, the
higher the optimal proportion invested in the global minimum variance portfolio. In line with
DeMiguel et al. [2009b], we set γ equal to 1, and we only focus on the composition of the risky
part of the suggested portfolios. More specifically, we calculate the relative weights of the risky
assets by

w∗KZ =
wKZ
|1ᵀwKZ |

, (2.4)

where |1ᵀwKZ | guarantees that the direction of the portfolio position is preserved in cases where
the sum of the weights of the risky assets is negative.

The Four-Fund Rule

DeMiguel et al. [2009b] show that the 1/N portfolio rule is difficult to outperform, especially if
the observation period is short. However, as the 1/N rule makes no use of the sample information,
it will fail to converge to the true optimal portfolio (unless, by chance, the two are the same).
Therefore, if 1/N is far from the optimal portfolio its performance might be poor. Tu and Zhou
[2011] propose the four-fund rule by combining the three fund-rule [see Kan and Zhou, 2007] in
an optimal way with the 1/N portfolio. The non-normalized weights of this portfolio combination
rule are

wTZ = (1− δ)we + δwKZ , (2.5)

where we is the equally weighted (1/N) portfolio and wKZ is the (non-normalized) optimal
portfolio defined by the three-fund rule. The parameter δ, which defines the ratio of wealth
allocated to each of the portfolios, is determined by the number of assets N and the number of
observations T . The larger the number of assets relative to the number of observations, the more
is invested in the 1/N portfolio, and the suggested portfolio becomes less prone to estimation
errors. As in equation (2.4), we normalize the portfolio weights as

w∗TZ =
wTZ
|1ᵀwTZ |

. (2.6)

In general, the above mentioned papers assume unknown but constant parameters, which have
to be estimated from historical observations. To mitigate the estimation problem, an increasing
number of assets N requires more observations T . In the limit – due to the Law of Large Numbers
– the estimated parameters converge towards their true values. However, in case of time-varying
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investment opportunities and/or structural breaks, historical data may not correctly reflect the
current state of the markets. On the other hand, for N > T , the sample covariance matrix
is always singular. Therefore, it is natural to investigate whether it is beneficial to reduce the
size of the asset menu and apply the portfolio rules to a representative subset, which reflects
the overall dependence structure. The next section provides a detailed explanation (and a few
examples) on how to reduce the asset universe using feature selection.

2.3 Dimensionality Reduction Using Feature Selection

This part of the paper proposes a heuristic, namely agglomerative hierarchical clustering, which
exploits the underlying correlation structure of the complete universe in order to reduce the size
of an N -dimensional asset universe significantly. The starting point for the clustering is the
covariance matrix after shrinkage, for which we rely on a constant correlation matrix (set equal
to the sample average) as structured estimator [see Ledoit and Wolf, 2003b].

2.3.1 Heterogeneity of the Asset Universe

In order to benefit from diversification when applying portfolio selection rules, the reduced subset
n ⊂ N should consist of the n assets with the lowest overall correlation with each other. Iden-
tifying this sub-space can be translated into the problem of finding the longest path of n ⊂ N
vertices in a simple cycle of an undirected graph. The distance between the vertices can be
represented by di,j = 1− ρi,j , where ρi,j is the correlation between assets i and j. A correlation
of 0.8 would then be equal to a Euclidean distance of 0.2, whereas a correlation of –0.2 would
be 1.2. Unfortunately, due to the curse of dimensionality, analyzing all subspaces of n ⊂ N is
not a feasible task.6 Furthermore, from an optimization point of view, the challenge of finding
the longest path is a NP-hard problem, i.e. cannot be solved in polynomial time, and general
approximation techniques are not available.

Therefore, we propose a heuristic method, hierarchical clustering, for decomposing a universe
of N assets into n subspaces. We then choose the most representative assets in each subspace,
identified as the medoid, in order to preserve the heterogeneity of the original asset universe.
The reduction of the asset universe should alleviate the parameter estimation problem.

2.3.2 Hierarchical Clustering

Classification and cluster analysis are used to group a collection of objects into subcategories/subsets
given a chosen criterion. In this work, hierarchical clustering is proposed as a method to establish
the relationship between different components in an asset universe.

In general, hierarchical clustering generates a nested sequence of partitions of objects or
observations [see Xu and Wunsch, 2005]. More specifically, we consider agglomerative hierarchical
clustering, which starts by placing each object in its own cluster and then merges these atomic
clusters into increasingly larger clusters until all objects are enveloped [see e.g. Tan et al., 2006].
Given a set of objects and a clustering criterion, the partition of the objects into clusters is
carried out such that the similarity within a given cluster and the dissimilarity among different
clusters is maximized. While the dissimilarity between pairs of observations is measured by an
appropriate distance metric, a linkage criterion specifies the dissimilarity of clusters as a function
of the pairwise distances of the members in each cluster. The choice of an appropriate metric

6For example, finding the optimal universe of the least correlated 15 out of 50 assets would require approxi-
mately 2.25 · 1012 permutations.
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will influence the shape of the clusters, as some elements may be close to one another according
to one distance and farther apart according to another distance measure (e.g. the Manhattan
distance and the Euclidean distance will indicate different lengths between two points in a 2-
dimensional space). Furthermore, there exist several linkage criteria in the literature, where the
most commonly used criteria are complete linkage clustering and single linkage clustering :

Complete linkage max{d(a, b) : a ∈ A, b ∈ B}

Single linkage min{d(a, b) : a ∈ A, b ∈ B},

where d is a distance measure. While in single-linkage clustering the similarity of two clusters is
given by the similarity of their most similar members, in complete-linkage clustering the similarity
of two clusters is determined by their most dissimilar members. Hence, using different linkage
criteria has a large influence on the size and shape of the clusters, and choosing an appropriate
distance metric and linkage criteria is therefore crucial when classifying elements in a universe.
Single linkage clustering is prone to the so-called chaining phenomenon, where clusters may
be forced together due to single elements being close to each other, even though many of the
elements in each cluster may be very distant from each other. Complete linkage avoids this
drawback and tends to find compact clusters of approximately equal diameters. Therefore, we
adopt the method of complete linkage in this paper [for a discussion on single- versus complete
linkage see Hartigan, 1981].

As established earlier, correlation is a feasible distance measure. Therefore, agglomerative
hierarchical clustering can be used to identify and cluster assets into a hierarchical structure
according to their correlation, and a pruning level determines the number of clusters. Although
the distance matrix used in the hierarchical clustering has to be estimated, this estimation is
only used as a basis for the preliminary coarse grid and not as a direct input parameter in the
portfolio optimization, i.e. the problem of parameter uncertainty is less severe. For all cases we
use shrinkage to estimate the covariance matrix as proposed by Ledoit and Wolf [2003b], with a
constant correlation matrix as structured estimator. In this way, the estimation error is reduced
and the requirement of a non-singular matrix is satisfied.

When the overall structure of the universe is established and n groups (also called clusters or
sets) are formed, representative assets (so-called pillars) are chosen from each cluster to constitute
a reduced asset menu on which the portfolio rules are applied. As the representative asset we
use the medoid.

2.3.3 Exhibition

In order to illustrate the proposed technique in a still confined data set, we use the 49 industry
portfolios from Kenneth French’s website. The 49 industry portfolios are composed of stocks
traded on the NYSE, AMEX, and NASDAQ according to their four-digit SIC code. The monthly
data span the period January 1970 to July 2013. First, we use the shrinkage technique to compute
the 49 × 49 correlation matrix and transform it to a Euclidean distance matrix. We then use
agglomerative hierarchical clustering with a complete linkage criterion.

The dendrogram in Figure 2.1 illustrates at which level the different sub-clusters are merged.
Portfolios which are highly correlated, i.e. have a small distance to their neighbors, are linked
together at an early stage. One example is the portfolios Mines, Steel, and Mach. The three
portfolios denote the mining, the steel, and the machinery industries, respectively, which due to
their business sectors are highly interconnected. The tree structure of the dendrogram can be
exploited to form groups of assets. By pruning at specific levels of the tree, a desired number
of sets can be constructed. For the purely illustrative purpose here, we decide to reduce the
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Dendrogram of the 49 industry portfolios

Figure 2.1: Dendrogram illustrating the correlation structure of the 49 industry portfolios

universe to n = 4. The result of maximizing the inter-cluster dissimilarity and the intra-cluster
similarity can be visualized with a principal component analysis (PCA). Figure 2.2 shows the
convex hull of each cluster projected on the first two principal components. Furthermore, their
corresponding pillars are indicated with a black bullet. It can be seen that the portfolios are
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PCA of the 49 industry portfolios

Figure 2.2: First two principal components of the 49 industry portfolios divided into 4 groups
according to hierarchical clustering with complete linkage. The black markers indicate the pillar
of each group with the corresponding name.

not evenly distributed across the different clusters. Set 1 holds a particularly large amount of
portfolios, while set 3 is a single portfolio. By projecting the 49 dimensions of this example
onto the first two principal components, the areas of sets 1 and 2 overlap. Of course, in the
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multidimensional space the convex hulls of the two sets do not overlap. The reduction of the 49
industry portfolios results in the following asset menu: Business Services (BusSv), Food, Coal,
and Gold.7 The maximum, minimum and average correlations of the portfolios in both universes
are summarized in Table 2.1.

Full universe Reduced universe
Max 0.86 0.63
Min 0.06 0.12

Average 0.57 0.35

Table 2.1: Maximum, minimum and average correlation of the 49 industry portfolios, and the
reduced universe of four portfolios.

As expected, the maximum and average correlation of the reduced universe has decreased
considerably compared to the full universe as only one pillar represents all members of a cluster
(which by construction have a high within-group correlation).

2.4 Results

This section assesses the performance of the minimum-variance portfolio (MVP), the mean-
variance tangency portfolio (TP), the three-fund rule (KZ), the four-fund rule (TZ), and the
1/N portfolio (1/N) for the full and the reduced asset universes. The use of the feature selection
technique is denoted by FS. The analysis is based on monthly returns of two data sets: (a)
the 49 industry portfolios and (b) the constituent stocks of the S&P 500 from January 1970
to July 2013. We conduct an out-of-sample back-test where only data up to the time of the
portfolio choice are used. The returns of the different portfolio selection rules are determined
by the realized returns of the chosen assets one month later when the portfolio is readjusted.
The reduced asset universe is constructed at the beginning of every year. Given that the focus
is on illustrating the benefit of feature selection and not on making a horse race between the
different portfolio selection rules, we deliberately do not account for transaction costs and use
gross returns. However, we indicate the portfolio turnover on an annual basis. Furthermore, for
the parameter estimation we use a “rolling window” with a length of either 60, 120, 180 or 240
months.

In Algorithm 2.4.1 we describe precisely how the back-test and the clustering is implemented
in the R programming language. In addition to the standard libraries, we use also the tawny

package for the shrinkage technique [see Ledoit and Wolf, 2003a]. For each chosen strategy and
observation period, we first calculate monthly returns. We use them to compute the sample
means and apply shrinkage to estimate the covariance matrix on the full asset menu (lines 4–6).8

Then, for optimal portfolios according to the different selection rules, we calculate an out-of-
sample return over the next month (lines 7–8). The Euclidean scalar product is denoted by 〈·, ·〉.
At the end of each year we choose representative assets for the next year.9 Therefore, in line
10, we calculate the distance matrix (distance measure is equal to one minus the correlation)
that is used by the clustering algorithm. In lines 11 and 12, we calculate the dendrogram of the
full asset universe and prune the tree to obtain n clusters. Throughout our calculations we have

7The extreme reduction of dimensionality in this exhibition is used for the illustration purpose only.
8The structured estimator is based on the constant correlation matrix (set equal to the average sample corre-

lation), which corresponds to the default value in the package.
9Given that the clusters are quite stable over time and the assets within a cluster are highly correlated, in

order to reduce excessive trading we propose to apply feature selection on an annual basis.
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Algorithm 2.4.1 Back-test

1: define π ∈ {MVP, TP, KZ, TZ, 1/N} {define portfolio selection rules}
2: for T ∈ {60, 120, 180, 240} do
3: for t from 1990.1 to 2013.12 do
4: calculate Rt[t− T + 1 : t, 1 : N ]; {matrix of returns of full asset universe}
5: µt ← colMeans(Rt); {set expected returns equal to sample means}
6: Σt ← cov.shrink(Rt); {apply shrinkage to estimate the covariance matrix}
7: wt(π, T )← π(µt,Σt); {weights for full universe following rule π}
8: Rt+1(π, T )← 〈wt(π, T ), Rt+1〉 {out-of-sample return of full universe and π}
9: if monthnumber=12 then

10: dt ← (1− cor.shrink(Rt)); {calculate distance matrix}
11: dendot ← hclust(dt); {create dendrogram}
12: clustnt ← cutree(dendot, n); {prone dendrogram to create n clusters}
13: mn ← medoid(clustnt ); {choose medoid asset of each cluster}
14: end if
15: µnt ← colMeans(Rt(m

n)); {expected returns of reduced universe}
16: Σnt ← cov.shrink(Rt(m

n)); {apply shrinkage to reduced universe}
17: wnt (π, T )← π(µnt ,Σ

n
t ); {weights for reduced universe with n assets}

18: Rnt+1(π, T )← 〈wnt (π, T ), Rnt+1〉 {out-of-sample return of reduced universe}
19: end for
20: end for

used exactly 15 clusters for both the 49 industry portfolios and the S&P 500. Then, we choose
the medoid to be the representative asset in each cluster, see line 13. Lines 15–18 repeat the
operations 5–8 on the reduced asset menu. Our back-test was run on a machine with Intel core
i5 (2.53 GHz, 3MB L3 cache) and 8 GB RAM. For the S&P 500 data set, all calculations of the
back-test can be conducted in less than one hour.10

1970 1971 1972 1973 1974 1975

60 months for parameter estimation

Figure 2.3: Example for the back-test approach (with an estimation window of 60 months).

Figure 2.3 shows the back-test approach for a rolling window of 60 months (solid brace) at
the end of year 1974, when parameters are estimated for the first time and when the portfolio
is optimized according to the different portfolio selection rules. One month later the return of
the chosen portfolio is measured and the time window for parameter estimation is shifted by
one month (dashed brace). Given that we use all available data for all the different observation
periods, the number of out-of-sample returns differs. While, e.g., for an estimation window of
60 months 463 out-of-sample returns can be calculated, this number reduces to 283 in case of
a 240 months window. Furthermore, in order to avoid that our performance comparisons are
determined by a specific inception date, in addition to the assessment over the whole period
we also evaluate realized returns of the different portfolio rules over consecutive 10 year periods

10The most time consuming operation is shrinkage. For the 49 industry portfolios the computational time for
all results is less than 10 minutes.
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(shifted by one year). This iterative testing of the portfolio rules is applied until the back-test
ends in the year 2013. This means that each portfolio rule is evaluated repeatedly on each data
set (with and without feature selection) and with each of the four rolling windows.

The performance assessment of the different portfolio rules is based on annualized alpha.
Alpha represents the return of a strategy beyond what would be expected given the exposure
to the relevant risk factors (for which a corresponding risk premium should be earned). While
the Capital Asset Pricing Model (CAPM) implies that the excess return of the market portfolio
(EXMKT ) over the risk-free rate r is the only explaining risk factor, the Arbitrage Pricing The-
ory provides the theoretical foundation for including arbitrary (additional) risk factors beyond
the market portfolio. Fama and French [1993], for short FF, identified empirically additional
return-predicting risk factors: the excess return on a portfolio of small stocks over a portfolio
of large stocks (SMB) and the excess return on a portfolio of high book-to-market stocks over
a portfolio of low book-to-market stocks (HML). Carhart [1997], short FFC, shows that in
addition to the three Fama-French factors an additional fourth predictor, the momentum fac-
tor (UMD), should be considered. Momentum in a stock is described as the tendency for the
stock price to continue rising if it is going up and to continue declining if it is going down. The
UMD can be calculated by subtracting the equally weighted average of the highest performing
firms from the equally weighted average of the lowest performing firms, lagged by one month.
Specifically, we conduct the following regressions

Rp,t − rt = α+
∑
j

Fj,tβj + εt,

with Fj,t ∈ {EXMKTt} for the CAPM model, Fj,t ∈ {EXMKTt, SMBt, HMLt} for the FF
model, and Fj,t ∈ {EXMKTt, SMBt, HMLt, UMDt} for the FFC model. The time series of
all risk factors are available on Kenneth French’s website.

Finally, in order to measure whether feature selection improves alpha significantly, we create
long/short portfolios (LS). Specifically, for each of the different test cases we take a long position
in the optimal portfolio of the reduced asset universe and a short position in that of the full
universe.

2.4.1 The 49 Industry Portfolios

The data are collected from the Kenneth French data library. We use monthly value-weighted
returns of each industry portfolio from January 1970 to July 2013. Table 2.2 shows the annualized
alpha for each portfolio rule and estimation window over the whole back-test period, and Table 2.3
gives the corresponding annual portfolio turnover.

The results can be summarized as follows: For the short estimation window of 60 months, in
line with Kritzman [1993], the results are mixed, and no portfolio rule (with and without feature
selection) has a statistically significant positive alpha. At the same time we observe an extreme
portfolio turnover for the Kan and Zhou [2007] and Tu and Zhou [2011] models.

For longer periods (≥ 120 months), in most cases results of the reduced universe outperform
those of the full universe, and some of the alphas turn out to be statistically significant relative
to the CAPM and the FF model. The same can be observed also for the LS strategy. Given
that due to our choice of using all available data the out-of-sample returns cover different time
intervals (see discussion above), here we deliberately abstain from comparing row-wise alphas
of one specific portfolio selection rule in order to find the optimal observation period.11 The

11When considering only out-of-sample returns of the same time-interval, we found that intermediate estimations
windows of 10–20 years perform best. Results are available upon request.
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window = 60 window= 120 window= 180 window= 240

CAPM FF FFC CAPM FF FFC CAPM FF FFC CAPM FF FFC

MVP 1.22 -0.58 0.11 0.73 -0.75 0.00 0.71 -0.62 0.11 0.99 -0.64 0.16
(0.15) (0.43) (0.88) (0.43) (0.34) (1.00) (0.48) (0.45) (0.89) (0.38) (0.47) (0.85)

MVP+FS 0.69 -1.07 -1.17 1.51 -0.08 0.17 2.62 1.53 1.65 2.88 1.13 1.44
(0.56) (0.33) (0.30) (0.25) (0.95) (0.89) (0.04) (0.21) (0.19) (0.08) (0.44) (0.34)

MVP+LS -0.53 -0.49 -1.28 0.78 0.67 0.18 1.90 2.15 1.53 1.89 1.77 1.28
(0.50) (0.53) (0.10) (0.35) (0.43) (0.84) (0.03) (0.01) (0.08) (0.05) (0.03) (0.14)

TP 1.17 -0.52 0.30 0.62 -0.76 -0.04 0.65 -0.66 0.06 0.95 -0.67 0.12
(0.19) (0.51) (0.70) (0.49) (0.34) (0.96) (0.52) (0.43) (0.94) (0.40) (0.45) (0.88)

TP+FS 4.26 4.21 5.26 1.25 -0.13 -0.11 2.46 1.39 1.43 2.66 0.95 1.25
(0.13) (0.14) (0.07) (0.36) (0.92) (0.94) (0.06) (0.27) (0.26) (0.11) (0.53) (0.41)

TP+LS 3.10 4.73 4.96 0.63 0.62 -0.07 1.81 2.05 1.37 1.71 1.62 1.13
(0.25) (0.08) (0.07) (0.50) (0.51) (0.94) (0.05) (0.02) (0.13) (0.16) (0.20) (0.40)

KZ 2.39 2.54 1.28 2.89 2.37 1.40 2.78 2.58 1.49 1.56 1.66 0.82
(0.25) (0.22) (0.54) (0.10) (0.18) (0.43) (0.12) (0.14) (0.40) (0.46) (0.43) (0.69)

KZ+FS 1.86 1.96 -0.19 4.32 3.50 2.52 2.91 1.98 1.06 1.58 0.78 -0.16
(0.27) (0.25) (0.91) (0.01) (0.02) (0.10) (0.08) (0.21) (0.50) (0.43) (0.69) (0.93)

KZ+LS -0.54 -0.58 -1.47 1.44 1.13 1.12 0.14 -0.60 -0.43 -0.02 -0.88 -0.98
(0.76) (0.74) (0.42) (0.33) (0.45) (0.47) (0.92) (0.67) (0.77) (0.92) (0.50) (0.48)

TZ 12.81 2.91 25.75 2.00 1.07 0.74 2.11 1.55 0.93 1.32 1.00 0.50
(0.41) (0.85) (0.08) (0.05) (0.28) (0.46) (0.09) (0.20) (0.44) (0.41) (0.53) (0.75)

TZ+FS 3.96 -0.72 0.88 3.85 2.88 2.11 2.96 1.96 1.12 1.59 0.69 -0.20
(0.41) (0.88) (0.95) (0.01) (0.03) (0.12) (0.05) (0.17) (0.44) (0.70) (0.91) (0.69)

TZ+LS -8.84 -3.63 -26.06 1.85 1.80 1.37 0.85 0.41 0.19 0.27 -0.31 -0.70
(0.60) (0.83) (0.11) (0.09) (0.10) (0.21) (0.45) (0.71) (0.87) (0.95) (0.71) (0.53)

1/N 1.38 -0.33 0.14 1.04 -0.41 0.15 1.07 -0.25 0.31 1.29 -0.30 0.37
(0.08) (0.62) (0.83) (0.22) (0.58) (0.84) (0.26) (0.75) (0.68) (0.24) (0.72) (0.66)

1/N+FS 1.20 -0.35 -0.56 1.76 0.28 0.44 2.71 1.57 1.57 3.06 1.35 1.55
(0.23) (0.71) (0.55) (0.13) (0.80) (0.69) (0.03) (0.17) (0.18) (0.05) (0.32) (0.26)

1/N+LS -0.19 -0.01 -0.70 0.72 0.68 0.29 1.63 1.81 1.25 1.77 1.77 0.64
(0.77) (0.98) (0.27) (0.31) (0.34) (0.68) (0.03) (0.02) (0.10) (0.10) (0.13) (0.30)

Table 2.2: Fama-French 49 Industry portfolios: α per annum for different models. The p-values
are shown in brackets.

indicated turnover for the portfolio selection rules with feature selection considers the monthly
readjustment of the portfolio weights as well as the annual selection of new representative assets.
To summarize, with the exception of 1/N (where results are similar), applying feature selection
on an annual basis lowers the portfolio turnover. For the Kan and Zhou [2007] and Tu and Zhou
[2011] models this reduction in turnover is remarkable.

Interestingly, we observe this improvement also for the 1/N rule, which is normally hard
to outperform [see e.g. DeMiguel et al., 2009b]. We explain this finding by the avoidance of
sector concentration together with choosing low-beta assets. As a support to this argument, in
Table 2.4 we indicate the beta of the 1/N rule for the whole and the reduced universes. After
selecting only the representative pillars of each cluster, the beta declines considerably. In this
way feature selection relates to the well documented phenomenon of “betting against beta” of
Frazzini and Pedersen [2014].

As a robustness check, we divide the out-of-sample back-test period into consecutive 10-year
periods (the number depends on the observation period) to check whether the outperformance
using feature selection is driven by a few sub-periods with a very large alpha. Table 2.5 reports
the percentage of 10-year periods in which alpha improves after using feature selection. It
is noteworthy that the majority of test cases show a percentage well above 50%, i.e. alpha
increases after applying feature selection. Again, in line with previous results, most optimization
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Without Feature Selection With Feature Selection Long/Short

T MVP TP KZ TZ 1/N MVP TP KZ TZ 1/N MVP TP KZ TZ 1/N

60 66.0 102.1 1033.1 458.5 38.2 46.9 87.6 179.8 148.7 42.7 184.6 243.4 1236.5 849.2 55.1
120 62.6 63.5 581.8 315.6 39.1 41.1 42.0 124.0 102.3 44.5 161.9 188.3 692.3 450.5 56.8
180 61.2 61.3 442.6 304.7 39.5 38.3 38.7 98.5 87.6 45.5 153.0 179.3 542.4 417.7 57.4
240 61.1 61.1 408.5 307.5 40.9 33.7 34.5 70.5 64.5 49.3 145.6 170.1 472.0 385.8 60.4

Table 2.3: 49 industry portfolios: Average annual turnover in percentage over the complete
back-test period.

1/N 1/N+FS
60 months 1.03 0.95
120 months 1.01 0.93
180 months 1.00 0.89
240 months 0.98 0.90

Table 2.4: 49 Industry portfolios: β of the 1/N rule; with and without feature selection.

rules with feature selection benefit from longer observation periods.

window = 60 window= 120 window= 180 window= 240

CAPM FF FFC CAPM FF FFC CAPM FF FFC CAPM FF FFC

MVP 46.4 32.1 10.7 47.8 47.8 52.2 88.9 88.9 77.8 100.0 100.0 100.0
TP 39.3 32.1 17.9 47.8 47.8 47.8 88.9 88.9 72.2 100.0 100.0 100.0
KZ 64.3 64.3 39.3 82.6 78.3 78.3 66.7 50.0 33.3 76.9 15.4 15.4
TZ 50.0 35.7 25.0 91.3 82.6 73.9 77.8 61.1 33.3 69.2 30.8 30.8

1/N 53.6 39.3 21.4 52.2 43.5 47.8 94.4 88.9 66.7 100.0 100.0 92.3

Table 2.5: 49 industry portfolios: Percentage of 10-year intervals for which the alpha of a specific
test case benefits from reducing the asset universe by feature selection.

2.4.2 The S&P 500 Universe

The Standard & Poor’s 500 Index covers 70% of the overall U.S. market capitalization. It consists
of 500 large US companies listed at the NYSE and NASDAQ. We consider the index composition
and the corresponding companies during the period January 1970 to July 2013. If a company
leaves the index while it is held in a portfolio, we sell it at the next (monthly) re-adjustment
stage.

In addition to be less prone to outliers, shrinkage avoids the problem of a singular sample
covariance matrix in case of more assets than observations. For the full S&P 500 asset universe
more than 41.6 years of monthly observations are required to prevent singularity. However, only
a few companies have been members of the index for such a long period of time. Furthermore,
even if the data were available, due to possible time-varying parameters it is not clear if these
old observations are relevant, and if they should be used. Hence, also for this data set we use
the shrinkage technique proposed by Ledoit and Wolf [2003b] to calculate the correlation matrix
required for the hierarchical clustering.

In order to determine the weight of the global minimum variance portfolio and of the tangency
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portfolio, Kan and Zhou [2007] and Tu and Zhou [2011] use an adjusted estimator for the true
Sharpe ratio. Therefore, their approach relies on the incomplete beta function, which is defined
as

Bz(a, b) =

z∫
0

ta−1(1− t)b−1dt, (2.7)

where 0 ≤ z ≤ 1, a = N/2 and b = (T − N)/2. For more assets than observations (T < N)
the incomplete beta function is not defined, i.e. it is not possible to use these portfolio selection
rules. Therefore, as an additional contribution, feature selection allows to apply these rules on
large data sets.

window = 60 window= 120 window= 180 window= 240

CAPM FF FFC CAPM FF FFC CAPM FF FFC CAPM FF FFC

MVP 1.02 -1.07 0.95 0.68 -1.14 0.23 0.67 -1.14 0.42 2.18 0.04 1.65
(0.32) (0.24) (0.22) (0.53) (0.23) (0.45) (0.60) (0.27) (0.66) (0.38) (0.46) (0.77)

MVP+FS 0.95 -0.80 2.01 2.91 1.12 2.79 2.37 0.82 2.01 4.53 2.66 4.63
(0.57) (0.62) (0.18) (0.07) (0.47) (0.16) (0.60) (0.20) (0.56) (0.02) (0.14) (0.01)

MVP+LS -0.07 0.27 0.06 0.97 0.99 1.41 3.15 3.38 3.99 2.35 2.62 2.98
(0.95) (0.83) (0.40) (0.46) (0.46) (0.30) (0.02) (0.01) (0.00) (0.05) (0.04) (0.02)

TP 0.63 -1.04 1.33 0.31 -1.26 0.63 0.52 -1.22 0.36 2.11 -0.01 1.60
(0.56) (0.30) (0.12) (0.77) (0.19) (0.45) (0.68) (0.25) (0.71) (0.33) (0.45) (0.88)

TP+FS -0.67 -0.86 2.31 0.63 -0.69 1.47 3.49 2.26 4.24 4.52 2.79 4.80
(0.78) (0.72) (0.32) (0.71) (0.68) (0.36) (0.04) (0.18) (0.01) (0.02) (0.13) (0.01)

TP+LS -1.29 0.18 0.98 0.30 0.54 0.82 2.96 3.45 3.87 2.41 2.80 3.20
(0.55) (0.93) (0.66) (0.82) (0.69) (0.55) (0.04) (0.02) (0.01) (0.06) (0.03) (0.02)

KZ+FS 1.44 0.92 -0.03 0.22 -1.15 -1.11 1.82 0.69 0.46 2.82 1.33 1.19
(0.46) (0.63) (0.99) (0.90) (0.49) (0.51) (0.34) (0.69) (0.79) (0.21) (0.48) (0.54)

TZ+FS 1.38 0.68 0.46 0.37 -1.03 -0.70 1.99 0.71 0.85 2.90 1.31 1.40
(0.38) (0.66) (0.77) (0.80) (0.47) (0.63) (0.25) (0.64) (0.58) (0.16) (0.44) (0.42)

1/N 1.50 -0.48 0.91 1.24 -0.48 0.73 1.19 -0.59 0.60 2.07 0.47 2.06
(0.08) (0.51) (0.16) (0.19) (0.48) (0.32) (0.30) (0.51) (0.48) (0.24) (0.72) (0.66)

1/N+FS 1.55 -0.37 1.46 1.50 -0.43 1.36 3.55 1.72 3.57 3.82 1.78 3.38
(0.26) (0.78) (0.24) (0.32) (0.76) (0.32) (0.03) (0.23) (0.01) (0.04) (0.23) (0.02)

1/N+LS 0.05 0.11 0.55 0.25 0.13 0.62 2.36 2.30 2.97 1.75 1.31 1.32
(0.96) (0.91) (0.60) (0.82) (0.91) (0.58) (0.04) (0.04) (0.01) (0.13) (0.15) (0.09)

Table 2.6: S&P500: α per annum for different models. The p-values are shown in brackets.

Table 2.6 reports the annualized alpha of the different portfolio selection rules over the whole
period. In line with the 49 industry data set, no portfolio selection rule generates a significant
positive alpha on the whole universe, and we observe a consistent improvement with feature
selection. Also for this data set the different models benefit clearly from longer estimation
periods, especially for the reduced asset universe. Most LS strategies perform best with a 180
or 240 months observation period, and some are significant with respect to the different factor
models. Table 2.7 shows the corresponding annualized turnover. For this data set, feature
selection applied on an annual basis reduces trading costs by more than 100%, and therefore
mitigates the problem of excessive trading.

Again, the improvement of feature selection holds also for the 1/N rule, which we attribute
to the reduced concentration risk and low-beta stocks. To support this explanation, in Table 2.8
we show the beta of the 1/N portfolios for the whole and the reduced universe. We observe that
after selecting only the representative pillars of each cluster, beta declined for longer observation
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Without Feature Selection With Feature Selection Long/Short

T MVP TP KZ TZ 1/N MVP TP KZ TZ 1/N MVP TP KZ TZ 1/N

60 313.0 356.1 71.2 130.6 152.3 173.9 141.6 69.4 427.9 501.3 136.0
120 260.5 285.0 71.0 117.2 120.0 132.7 117.0 68.1 364.9 391.2 134.1
180 234.9 252.1 69.0 109.2 113.0 118.5 107.7 65.9 332.4 353.7 129.4
240 202.6 211.8 68.5 90.3 93.1 92.6 87.4 63.7 282.9 294.5 125.9

Table 2.7: S&P500: Average annual turnover in percentage over the complete back-test period.

periods. However, for shorter observation periods we could not observe this reduction in beta.
Given the higher number of individual assets (compared to the 49 portfolios in the previous data
set), we attribute this fact to a more severe parameter estimation problem. A more thorough
investigation of the effect of feature selection on the beta of a portfolio is left to future research.

1/N 1/N+FS
60 months 1.06 1.07
120 months 1.02 1.02
180 months 1.00 0.97
240 months 0.99 0.95

Table 2.8: S&P500: β of the 1/N rule; with and without feature selection

window = 60 window= 120 window= 180 window= 240

CAPM FF FFC CAPM FF FFC CAPM FF FFC CAPM FF FFC

MVP 50.0 60.7 78.6 65.2 78.3 78.3 100 94.4 100 92.3 84.6 84.6
TP 57.1 57.2 75.0 65.2 78.3 78.3 100 94.4 100 92.6 84.6 84.6

1/N 64.3 64.3 75.0 60.9 78.3 52.2 100 94.4 94.4 84.6 76.6 76.6

Table 2.9: S&P500: Percentage of 10-year intervals for which the alpha of a specific test case
benefits from reducing the asset universe by feature selection.

Table 2.9 shows the percentage of 10-year periods in which alpha increases with feature
selection. Here we can clearly see that longer estimation periods improve the results of feature
selection, especially for 15 and 20 years.

2.5 Conclusion

Parameter uncertainty is a major cause for the poor out-of-sample performance of portfolio
selection rules based on the sample mean and the sample covariance matrix. We propose reducing
the asset universe with hierarchical clustering before applying the portfolio selection rule. To
assess the benefits of our proposal with out-of-sample back-tests, we apply five well-established
portfolio selection rules with different estimation windows on two different data sets: the Fama-
French 49 industry portfolios and the constituents of the S&P 500 index. For most test cases,
alpha relative to different prominent factor models is improved by using feature selection, and
some alphas are statistically significant. We apply a robustness check to show that our results
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are not driven by a couple of return outliers. Furthermore, in some cases with longer estimation
windows also the alpha of a long/short strategy turns out to be statistically significant. We
consider this finding to be in support of the proposed approach. Finally, our method mitigates
the problem of excessive portfolio turnover.
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Chapter 3

Portfolio Selection under Supply
Chain Predictability
Thomas Trier Bjerring · Kourosh Marjani Rasmussen · Alex Weissensteiner

Status: Submitted, Computational Management Science

Abstract: We investigate empirically whether returns of stocks from one in-
dustry predict those of another. We analyze this question through a VAR
process and find downstream predictability in the supply chain along with
autocorrelation. We use a portfolio selection framework in order to analyze
whether the predictability, in addition to being statistically significant, is also
economically relevant. We find significant out-of-sample excess returns, and a
noteworthy increase in Sharpe ratio.

Keywords: Portfolio selection, Supply chain, Star Ratio, Fractional program-
ming

3.1 Introduction

A large body of research has been dedicated to investigate the existence of predictability of re-
turns in the United States and other industrialized countries. Evidence of predictability for the
U.S. market is illustrated by Campbell [1987], who shows that the shape of the term structure of
interest rates predicts stock returns. Furthermore, Breen et al. [1989] discover that the one-month
interest rate is able to forecast the sign and the variance of the excess return of stocks. Fama
and French [1988], and Fama and French [1989] show strong autocorrelation for long-horizon
predictions of stocks and bonds and that a clear relationship to the business cycle exists. Ferson
et al. [1991] find that most of the predictability of stocks and bonds is associated to sensitivity of
economic variables. Hence, the stock market risk premium is a good predictor for capturing vari-
ation of stock portfolios, while premiums associated with interest rate risks capture predictability
of the bond returns. Lettau and Ludvigson [2001] analyze the aggregate consumption-wealth ra-
tio for predicting stock returns, and find that fluctuations in the consumption-wealth ratio is a
strong predictor of both real and excess returns over the treasury bill rate.
Through the literature, different models have been proposed for forecasting expected returns,
where the most prominent ones are based on state-space or vector autoregressive (VAR) models.
These are discussed in detail by Cochrane [2008]. Furthermore, Pástor and Stambaugh [2009]
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address the issue of imperfect predictors and their effect on the innovation in expected returns.

The predictability of returns is shown in a similar way for other international markets. Cutler
et al. [1991] find for 13 economies that returns tend to show positive serial correlation on high
frequency and weak negative serial correlation over longer horizons. Furthermore, they show
that deviation of asset values from proxies of fundamental values have predictive power. Harvey
[1991] measures the risk of 17 economies and discovers that the expected return is determined
by a country’s world risk premium. Bekaert and Hodrick [1992] characterize the predictable
components in excess returns on major equity and foreign exchange markets using lagged excess
returns, dividend yields, and forward premiums as predictors. A vector autoregressive process
is used to demonstrate one-step-ahead predictability. Ferson and Harvey [1993] investigate pre-
dictability in returns of the US market, and its relation to global economic risks. Furthermore,
Solnik [1993] analyzes whether exchange rate risk is priced in international asset markets, and he
finds that equities and currencies of the world’s four largest equity markets support the existence
of a foreign risk premia.
Ang and Bekaert [2007] investigate the predictive power of the dividend yields for forecasting
excess returns and cash-flows, and they find that interest rates are good predictors for interna-
tional data. Finally, Hjalmarsson [2010] uses dividend-price and earnings-price ratios, the short
interest rate, and the term spread as predictors. He analyzes 20,000 monthly observations from
40 international markets, including 24 developed and 16 emerging economies. His results indi-
cate that the short interest rate and the term spread are robust predictors of stock returns in
developed markets. In contrast, no strong or consistent evidence of predictability can be found
when considering the earnings-price, and dividend-price ratios as predictors.

Although Welch and Goyal [2008] question the validity and reliability of out-of-sample stock
return predictability, Rapach et al. [2010] provide robust out-of-sample evidence of return pre-
dictability, which is further supported by Henkel et al. [2011], Ferreira and Santa-Clara [2011],
and Dangl and Halling [2012]. In light of the evidence of stock predictability, this has been incor-
porated into asset pricing models, see Campbell and Cochrane [1995], Bansal and Yaron [2004],
and the relevance of component return predictability for portfolio management is investigated
by Campbell et al. [2003], Avramov [2004], and Avramov and Wermers [2006].

Recently, Hong et al. [2007] show that underlying industries can predict movements of the
aggregated market. Their investigation is motivated by the implications of limited information-
processing capacity for asset prices, see Shiller [2000], and Sims [2005]. The hypothesis suggests
that investors, rather than possessing unlimited processing capacity, are better characterized as
being only bounded rational. Hence, investors such as those that specialize in trading the broad
market index, receive information originating from particular industries with a lag. As a result,
the returns of industry portfolios that are informative about macroeconomic fundamentals will
lead the aggregated market.
They suggest that an industry’s predictive ability is strongly correlated with its propensity to
forecast indicators of economic activity. They find similar results for the eight largest non-US
stock markets. These results indicate that markets incorporate information about fundamentals
contained in single industry returns only with a lag as information diffuses gradually across asset
markets.
These findings are further supported by Merton [1987] and Hong and Stein [1999]. Merton shows
that if investors have limited information about a stock universe, less known stocks would trade
at a discount because of limited risk-sharing. Furthermore, Hong and Stein find that if informa-
tion gradually diffuses across the market, investors are unable to reach the rational expectations
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equilibrium by extracting information from prices. As a result, prices underreact to new infor-
mation, which leads to stock return predictability.
Menzly and Ozbas [2006] address a similar issue and find that industries related to each other
through the classical supply chain, both up and downstream, exhibit strong cross-momentum.
They develop a trading strategy that consists of buying or selling industries with large positive
or negative returns compared to their related industries over the previous months. They find
that this strategy yields significant excess return. Using information about the flow of goods
and services between industries from a survey conducted by the U.S. Department of Commerce
- Bureau of Economic Analysis, they show that returns of a given industry are connected to
related industries. Finally, they interpret these findings as empirical evidence for partial and
gradual diffusion of information across fundamentally related risky assets.
These findings are further supported by Cohen and Frazzini [2008], who find evidence of return
predictability across economically linked firms. They test the hypothesis that in the presence of
investors subject to attention constraints (which is to be understood as synonym to limited infor-
mation processing), stock prices do not promptly incorporate news about economically related
firms. Hence, return predictability can be observed across assets. Rapach et al. [2010] provide
extensive evidence for out-of-sample return predictability of 33 industry portfolios based on a
principal component approach that incorporates information from a large number of predictors.
Moreover, they find substantial differences in the degree of return predictability across industries,
and show that while significant out-of-sample industry return predictability is widespread, there
are substantial differences in the degree of return predictability across industries. An out-of-
sample decomposition shows that a conditional version of the Fama-French three-factor model
accounts for nearly all industry return predictability. They emphasize that industry return pre-
dictability is closely linked to time-varying investment opportunities, and that size premiums
indicate predictable fluctuations in the aggregated market.

We show in this paper that some industries tend to drive the returns of others, which results
in return predictability. Our contribution to the literature includes a rigorous analysis of the
magnitude of the predictive behavior of certain industry segments on the supply chain across
the U.S. economy. We start by using a VAR process to map significant relations between dif-
ferent sectors in order to uncover lead and lagged returns on a monthly basis. We later analyze
the predictability in an out-of-sample portfolio selection setting to test, if the predictability is
economically significant. We optimize a portfolio according to the expected return-CVaR ratio,
known as STAR ratio, see Martin et al. [2003]. We compare the results based on a vector au-
toregressive process to that of using a Brownian motion for estimating expected returns, hereby
addressing the out-of-sample impact of the predictive power.

The remainder of the paper is structured in the follow way: In Section 2 we summarize
the existing literature on supply chain predictability and introduce the statistical framework to
test it. In Section 3 we propose a portfolio selection model in order to test whether potential
trading profits based on this predictability are economically relevant. Section 4 conducts the
out-of-sample backtest of our portfolio selection model. Section 5 concludes.

3.2 Supply Chain Predictability

Hong et al. [2007] investigate the relationship between a stock index and the underlying indus-
tries. They find that some industries lead the index, which gives rise to return predictability
caused by limited information sharing. We believe that this hypothesis can be further extended,
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and that some industries not only lead the entire index, but also tend to lead other individual
industries. Our conjecture is that industries depend on each other through the delivery of goods
and services, and that the state of a leading industry is only reflected gradually in time by other
industries, which gives rise to return predictability between industries.

We begin our analysis by investigating the predictive power between industries in the U.S.
market. We use monthly returns of the 5, 10 and 17 industry portfolios provided on Kenneth
French’s webpage, which are constructed from single stocks listed on NYSE, AMEX and NAS-
DAQ.1 The analysis of the in-sample predictability is carried out using a vector autoregressive
model (VAR) to explore the linear dependencies of returns between sectors.

In line with Hong et al. [2007], we include a number of well-known market predictors to address
alternative explanations for why one industry’s returns might forecast other industries. These are
the lagged excess market return, inflation [for a dicussion see Campbell and Vuolteenaho, 2004,
Fama, 1981, Fama and Schwert, 1977, Lintner, 1975], and the market dividend yield. The market
dividend yield is computed as the difference between the log of dividends and the log of lagged
market prices, and has been extensively discussed in the literature by e.g. Ball [1978], Campbell
[1987], Campbell and Shiller [1989], Campbell and Shiller [1988], Campbell and Viceira [2002],
Campbell and Yogo [2006], the survey in Cochrane [1998], Fama and French [1988], Hodrick
[1992], Lewellen [2004], Menzly et al. [2004], Rozeff [1984], and Shiller et al. [1984]. The three
presented variables are typically thought to be proxies for time-varying investment opportunities.
To the extent that our results hold with these variables in the regressions, we make a first-hand
conclusion that our findings are not due to already well-known market predictors. Additionally,
we include lagged market variance in our set of control variables to avoid that industry returns
forecast market variance, which is proxied by the sum of squared daily returns of the S&P 500.
The data used for the four predictors are collected from Amit Goyal’s data library on predictive
factors.2

The advantage of the vector autoregressive process is that contrary to a regular autoregressive
process, an economic variable is not only related to its predecessors in time, but also depends
linearly on past values of other variables. Hence, VAR models can be used to capture the
linear interdependencies among multiple time varying factors, where the time series cannot be
assumed to be independent. VAR models hereby generalize the univariate autoregression model
by allowing for more than one evolving variable. In general, a VAR model describes the evolution
of a set of N endogenous variables over some sample period t = 1, ..., T as a linear function of
their past values, and is for the order p defined as

Xt = A1Xt−1 +A2Xt−2 + ...+ApXt−p + c+ εt, (3.1)

where p describes the maximum lag in the VAR model, c is a constant and εt is the residual
error between the fitted model and the observed historical values. The VAR(p) model for p = 1
is defined as

Xt = A1Xt−1 + c+ εt, (3.2)

where A1 is a (n×n) coefficient matrix and εt is an (n×1) zero mean white noise vector process
(serially uncorrelated) with time invariant covariance matrix Σ.

In the following analysis we use a VAR(1) process for the monthly return series and analyze the
statistically significant parameters in the coefficient matrix. Significant values are mapped in a

1French’s Data Library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
2 Goyal’s Data Library: http://www.hec.unil.ch/agoyal/
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flow chart to indicate which lagged returns of industries predict future returns of other industries.
This dependence is illustrated with an arrow going from root to the leaf node. If returns of one
industry predict those of another’s while accounting for the predictors, we expect a significant
number of the coefficients in the VAR process to be statistically different from zero such that
our gradual-information-diffusion hypothesis holds. We start by analyzing the coefficient matrix
of the VAR(1) model when applied to the 5 industry data set. A studentized Breusch-Pagan
test indicates that the residuals are homoskedastic. Furthermore, given that the residuals have
non-zero skewness and are leptokurtic, p-values cannot be used to identify significant parameters.
We therefore use bootstrapping to compute non-parametric 95%-confidence intervals around each
parameter in the coefficient matrix by applying the procedure BCa proposed by Efron [1981],
which adjusts for both skewness and leptokurtosis in the bootstrap distribution. Following this
procedure, we consider a parameter to be significant only if zero is not included in the interval
between the lower and upper bound. We then map significant values, which leads to the patterns
shown in Figure 3.1.

Figure 3.1: FF5 industry portfolios. The arrows indicate if the returns of one sector predict
the returns of another the following month in a statistically significant manner (95% confidence
interval calculated with bootstrapping).

Figure 3.1 shows that even when including the mentioned predictors in the VAR process, we
can observe that one industry’s lagged returns have predictive power in forecasting future re-
turns of others. Furthermore, we observe a simplified two-tier pattern of a supply chain between
industries. Other exists as root node and its lagged returns have significant statistical power
in predicting future returns of Hitec, Manuf, and Cnsmr. Furthermore, we find autocorrelated
returns for Other, where lagged returns predict subsequent returns. Hlth is unpredictable.
Although the five industry portfolios are composed by a large range of companies, we can confirm
that some industries’ returns seem to be predicable by others. To further extend the analysis,
we analyze the 10 industry data set and repeat the exercise by fitting a VAR(1) process to the
return time series along with the predictors and the bootstrap confidence intervals around the
parameters in the coefficient matrix.
Figure 3.2 gives a more elaborate multi-layer structure for which lagged industry returns have

predictive power. Hitec is the root in the system, and it accounts for a major part of the signifi-
cant predictability, though Other also seems to play a large role in the network. Hitec and Other
both experience significant autocorrelation in their returns, while the status of the predictability
of Hlth’s returns has changed, and it is now included in the network. Contrary, Enrgy shows
no predictable behavior.
The lagged returns of the root node predict most of the future returns of the other industries, and
we find that the industries Hitec and Other play major roles in driving the returns of others. To
further uncover the observed multi-tier structure, we investigate the mapping of the significant
coefficients in the matrix of the VAR(1) process for the 17 industry portfolios.

Figure 3.3 shows the complete hierarchical mapping of the 17 considered industries, and a
clear supply chain structure emerges, where the rather ambiguous names Hitec and Other are
replaced by Machn and Finan as root nodes. The root nodes continue to experience autocorre-
lation, showing that these particular industries tend to predict the returns of others and hereby
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Figure 3.2: FF10 industry portfolios. The arrows indicate if the returns of one sector predict
the returns of another the following month in a statistically significant manner (95% confidence
interval calculated with bootstrapping).

Figure 3.3: FF17 industry portfolios. The arrows indicate if the returns of one sector predict
the returns of another the following month in a statistically significant manner (95% confidence
interval calculated with bootstrapping).

the market. Following the root nodes to the leaf nodes,3 we observe that the predictive power
of lagged returns is in line with the classical layout of a supply chain of an industrialized econ-
omy, e.g. we observe that Machn and Rtail drives the car industry, which intuitively matches
the natural dependency. Distinctive paths following the delivery of good and services similar to
these exist for the majority, with a few exceptions. It is not clear how e.g. Mines and Machn
predicts Cnsum.

A noteworthy finding is that the returns of the Oil sector shows no predictive capabilities.
The historic performance of the companies in the oil sector show a strong correlation to the
changes in the oil prices, which has been documented to forecast stock returns by Pollet [2005]
and Driesprong et al. [2008]. We find that when excluding the four predictors, Oil becomes a
root predictor along with Machn and partly Finan, though when including the four lagged fac-
tors, the predictive power disappears. This is in line with Sørensen [2009], who argues that the

3We define leaf nodes as the nodes which hold no predictive power shown by no outgoing arrows.
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seemingly predictive power of oil prices are caused by exogenous events. The exogenous events
usually correspond to periods of extreme turmoil, e.g. either military conflicts in the Middle
East or disagreements in the OPEC alliance.

Summarizing the findings from the three data sets, we can observe a distinctive pattern
forming the supply chain of the U.S. economy with each individual node representing a specific
industry and its immediate relation to other industries in terms of lagged and future monthly
returns. We observe that not only do some industries predict the market, but they also forecast
other individual industries. Our results indicate two types of predictability behavior. First, we
observe downstream predictability, where the lagged returns of a sector earlier in the supply chain
predict the returns of following industries. Secondly, we find that the lagged returns of an indus-
try hold predictive power of future ones, and that serial autocorrelation exists. We can observe
a multi-tier hierarchical system between the sectors with statistically significant predictability.
The main drivers of the apparent predictability are the machinery and the financial sectors, and
it therefore seems reasonable to assume that those are good predictors for the aggregated U.S.
economy. In order to assess whether these findings, in addition to being statistically significant,
are also economically significant, we use the VAR processes of the different data sets in a portfolio
selection framework.

3.3 Exploiting Predictability in the Asset Allocation

This section describes the proposed model to exploit time varying investment opportunities
in an asset allocation framework. We use the STAR ratio proposed by Martin et al. [2003] for
creating a portfolio of industries. Compared to the classical Shape ratio, the STAR ratio uses the
Conditional Value-at-Risk (CVaR) as risk measure, which in addition to being coherent does not
rely on the assumption of elliptical distributed returns. We discretize the vector autoregressive
process with the moment-matching technique proposed by Høyland et al. [2003], and formulate
the decision problem as a stochastic linear program using fractional programming, which ensures
that the optimal risk-adjusted portfolio can be computed efficiently.

3.3.1 Scenario Generation

In order to follow the adopted approach presented earlier, we discretize a VAR(1) process with
a finite number of scenarios. For an overview of different methods, see Kaut and Wallace [2003].
Contrasting schools of thought exist when creating a discrete approximation of a continuous dis-
tribution, e.g. sampling and moment matching. The first one assumes a theoretical distribution
from which N samples can be drawn. According to the Law of Large Numbers, for N →∞, the
approximation will converge towards the true distribution. The drawback of this method with
regards to optimization is that in order to get a good approximation of the distribution, we are
left with a large number of scenarios, which increases the dimensionality of our decision problem.
The second main method relies on matching the statistical moments of the true distribution, i.e.
mean, variance, skewness, kurtosis and correlation. The method itself evolves around solving
a non-linear optimization problem which minimizes the sum of errors of the difference between
the true moments and the moments of a discrete distribution with a predefined fixed number
of scenarios. In this case, we chose to rely on the latter method and therefore match the mo-
ments of the considered assets. The mean is taken as the forecasted expected return using the
estimated VAR process, and the variance and correlation matrix is directly derived from the
sample covariance matrix of the residuals. Even for non-normally distributed data, the method
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of OLS provides a minimum-variance mean-unbiased estimation of the coefficient matrix assum-
ing constant variance. Hence, there is no requirement that the residuals of the VAR process
are restricted to the normal distribution. Skewness and kurtosis are calculated from the resid-
uals. Using the moment-matching procedure, we can approximate the continuous distribution
by assuming that the sample parameters are true values of the underlying stochastic process,
and address the potential multivariate non-normality in the residuals. Figure 3.4 illustrates the
discrete bivariate probability distribution of two assets when applying the presented scenario
generation method.
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Figure 3.4: Bivariate probability plot of the matching of mean, variance and correlation of
a continuous stochastic process using 100 scenarios. The circles show the 1st and 2nd sigma
ellipses.

3.3.2 Asset Allocation

The classical asset allocation decision problem describes an investor, who allocates capital among
various securities, thus assigning a weight to each security. Let i = {1, 2, ..., n} denote a set of
securities considered for investment. For each security i ∈ N , its rate of return is represented
by a random variable Ri with a given expected return µi = E(Ri). Furthermore, let x = (xi)
for i = {1, 2, ..., n} be a vector of decision variables, where xi denotes the weights of each asset.
To represent a portfolio, the weights must satisfy a set of constraints that form a feasible set P.
The simplest way of defining the feasible set is by a requirement that the weights must sum to
one, i.e.

∑N
i=1 xi = 1 for i = {1, ..., n}. A portfolio x defines a corresponding random variable

Rx =
∑
i=1Rixi that represents the portfolio’s rate of return. We consider ω scenarios with prob-

abilities ps where s = {1, ..., ω}. We assume that for each random variable Ri its realization ri,s
under the scenario s is known. The realizations of the portfolio return Rx in the scenario setting
are given as

∑n
i=1 ri,sxi and the expected value can be computed as µ(x) =

∑ω
s=1(

∑n
i=1 ri,sxi)ps.
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The portfolio decision problem is usually considered in the mean-variance setting, where the
optimal portfolio maximizes the Sharpe ratio (defined as the ratio of the portfolio’s expected
excess return relative to the risk free rate over the standard deviation of the portfolio return).
While the Sharpe ratio is the single most widely used portfolio performance measure, it has
several disadvantages due to its use of the standard deviation as measure of risk. The standard
deviation is a symmetric measure that penalizes upside and downside potential equally, and fails
to be a coherent measure of risk [see Artzner et al., 1999]. Furthermore, it is a highly unsta-
ble measure of risk when returns follow a heavy-tailed distribution. Martin et al. [2003] suggest
using the Conditional Value-at-Risk (CVaR) as measure of risk instead of the standard deviation.

Conditional Value-at-Risk quantifies the losses in the tail of a distribution as mean shortfall
at a specified confidence level [Rockafellar and Uryasev, 2002]. In the case of continuous distri-
butions, CVaR is known also as Expected tail loss (ETL), Mean Shortfall [Mausser and Rosen,
1999], or Tail Value-at-Risk [Artzner et al., 1999]. CVaR is proposed in the literature as a su-
perior alternative to the industry standard Value-at-Risk (VaR) by satisfying the requirements
for coherency defined by Artzner et al. [1999] and shown by Pflug [2000]. Furthermore, it is
consistent with second order stochastic dominance shown by Ogryczak and Ruszczyński [2002].
In case of a discretized state space it leads to LP solvable portfolio optimization models [Rock-
afellar and Uryasev, 2002], and in the limited settings where VaR computations are tractable,
i.e., for normal and elliptical distributions, CVaR maintains consistency with VaR by yielding an
identical solution [Keating et al., 2001]. Generally, CVaR is conditioning on the losses in excess
of VaR, hereby deriving a more appropriate estimation of the significant losses than VaR, i.e. for
the confidence level α, the CV aRα is defined as the mean of the worst (1-α)·100% scenarios

CV aRα(X) = ETLα = E(−X| −X > V aRα(X)), (3.3)

where V aRα(X) is defined as V aRα(X) = inf{x ∈ R : P (X ≤ x) ≥ α}.

The expected return/CVaR ratio is called “STAR ratio”. Martin et al. [2003] show that
the maximization of this ratio yields superior risk-adjusted returns relative to the Markowitz
portfolio under real-world market conditions. Furthermore, they show that if returns are normally
distributed, the maximization of the STAR ratio coincides with the maximization of the Sharpe
ratio. In this paper, we will therefore consider the maximization of the STAR ratio in the
portfolio setting.

3.3.3 Fractional Programming

The maximization of a performance ratio (e.g. the STAR ratio) in portfolio optimization can
usually only be expressed with a non-linear objective function.

max
x

µ(x)
ζ(x)

s.t. x1 = 1,
(3.4)

where µ is a return- and ζ(x) is a risk-function, respectively. Though, in the limiting case
where the expected return and the risk functions are quasi-concave and quasi-convex, respec-
tively, we can transform the maximization of the ratio of the two functions into a linear problem
using fractional programming. Conditional Value-at-Risk satisfies this criteria. The principal
reason behind the possible transformation is rooted in the properties of the quasi-concave and
quasi-convex function, which enables to solve the problem efficiently using second-order cone
programming. Its application to portfolio selection for different risk criteria and the necessary
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properties are discussed in detail by Stoyanov et al. [2007].

The non-linearity has earlier been overcome by introducing a linear counterpart of the ob-
jective function, where the relationship between reward and risk is controlled by a λ parameter
defining the risk aversion. The objective function can then be written as an utility function
µ(x) − λζ(x), where λ > 0, [see Rockafellar and Uryasev, 2002, Krokhmal et al., 2002]. By
recursively increasing λ, an optimal solution can be obtained. Though, this requires solving a
series of linear problems.

Consider the optimal portfolio problem, the STAR ratio is then defined as

STARR(w) =
w>Er − Erb

CV aRα(w>r − rb)
. (3.5)

Stoyanov et al. [2007] show how the maximization problem of the STAR ratio can be formulated
in the linear setting using fractional programming. We follow their approach, where the optimal
portfolio is derived according to a benchmark portfolio, e.g. the risk free rate or an index. The
model can be formulated as follows

max
x

n∑
i=1

µ̂i · xi − µ̂bt

s.t. ξα +
1

ωα

ω∑
s=1

y+s ≤ 1

−
N∑
i=1

xiri,s + µ̂bt− ξα ≤ y+s ∀s ∈ Ω

n∑
i=1

xi = t

y+s ≥ 0 ∀s ∈ Ω
t ≥ 0,

(3.6)

where µ̂i and µ̂b denote the expected return of each asset in the portfolio and the return of a
benchmark, respectively. ri,s is the return in scenario s for each asset i, and y+s is an auxiliary
variable used for the linearization of the CVaR formulation and ξα is the Value-at-Risk. The
auxiliary variable t is used for the transformation of the original non-linear problem to the cor-
responding linear formulation. It is worth noting that the benchmark variable itself is not a
necessary requirement for the transformation of the problem using fractional programming. The
decision variable xi denotes the optimal weights for each asset i and α defines the confidence

level. The optimal normalized weights can be computed as w∗i =
x∗i
t .

The transformation of the problem only yields a meaningful solution when the expected return
of the optimal portfolio is larger than that of the benchmark as the solution would otherwise be
equal to unity. The condition is most of the times fulfilled in real-life situations. Kirilyuk [2013]
discusses the problem for the Omega ratio, and proposes a solution which is directly applicable
for the STAR ratio as well. He shows that the original problem can be reduced to another LP
problem.

3.4 Empirical Analysis

This section investigates empirically the supply chain predictability by conducting an out-of-
sample back test and by evaluating the excess performance over the benchmark. The back test
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is conducted such that 20 years of monthly returns up to a given date are used for parameter
estimation. The actual returns of the portfolio selection rule is determined by the realized returns
of the chosen assets one month later.
We test the portfolio framework on the three data sets earlier presented, i.e. the 5 industry
portfolios, the 10 industry portfolios and the 17 industry portfolios. The number of months for
the estimation is deliberately chosen to be large to reduce the effect of parameter uncertainty, for
a discussion see DeMiguel et al. [2009], Kritzman et al. [2010], and Bjerring et al. [2016]. We use
monthly returns from 1927.01 to 2015.12, and each out-of-sample back test starts from 1947.01
as the first 20 years of data are used for parameter estimation.
We first investigate if the model can provide statistically significant excess returns compared
to the CAPM, the Fama-French three factor model, and the Fama-French-Carhart four factor
model. We extend this analysis to a comparison of Sharpe ratios and evaluate the significance
of the difference between the risk adjusted returns of the model and a benchmark. Through the
analysis, we compare the results of the STAR model using scenarios generated from a VAR(1)
process to the results when scenarios are generated from a geometric Brownian motion (GBM),
hereby removing the potential effect of predictability. Hence, the values in the coefficient matrix
of the VAR process are fixed to zero, except for the intercept.

At every decision stage, we generate 1000 scenarios using the presented VAR(1) process for
the considered industries. The heuristic moment matching approach for generating scenarios does
not guarantee arbitrage-free scenario trees, and we check for the no-arbitrage bounds proposed
by Geyer et al. [2014]. No arbitrage opportunities were found in the scenarios during the study.
Furthermore, we constrain our model such that short-selling is not allowed to make a legitimate
comparison to a benchmark index, and define the threshold parameter µ̂b from the STAR ratio
model to be equal to zero. We constrain our model to invest only if a portfolio with expected
return larger than zero exists i.e. i.e. if E(Rx) > µ̂b.

3.4.1 Performance Statistics

We first provide different performance statistics of the out-of-sample back tests. We base our
analysis on annualized arithmetic and geometric means of the returns, along with the Sharpe ra-
tio, Sortino ratio, and Treynor ratio. Furthermore, we compute the Cornish-Fisher Value-at-Risk
[Cornish and Fisher, 1938], which gives a better representation than the traditional Value-at-Risk
as skewness and excess kurtosis are considered. Finally, we investigate the maximum drawdown
of a portfolio rule. Here, a drawdown is measured on the cumulative returns of a portfolio rule
and refers to the decline in value from the previous local maximum to a subsequent trough. Ad-
ditionally, the maximum time “under water” is computed, which measures the maximum time
to recovery from a drawdown. Many portfolio frameworks suffer under high turnover, meaning
that potential excess returns over the market are diminished by the adherent transactions costs
of trading. We therefore address this issue as well.

Table 3.1 shows that the VAR process provides higher average returns and Sharpe ratios than
the geometric Brownian motion for all data sets, indicating an economic incentive for considering
the linear dependencies between the returns of the different industries. Generally, the Value-
at-Risk is similar or higher for the VAR(1) process than the comparable geometric Brownian
motion, which is further supported by the observed maximum drawdown, but does not come at
the expense of an increase in market risk, β. Hence, the excess return is not generated from
over-exposure to systematic risk. On the contrary, we observe a clear reduction in systematic
risk for the VAR processes. Admittedly, the portfolio turnover is substantially higher for the
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Market GBM5 VAR(1)5 GBM10 VAR(1)10 GBM17 VAR(1)17
Ann. Arithmetic mean (%) 11.71 11.90 12.76 11.74 14.01 12.22 14.00
Ann. Geometric mean (%) 11.15 11.34 12.33 11.35 13.71 11.74 13.58
β (Systematic risk) 1.00 0.92 0.84 0.79 0.80 0.84 0.81
Sharpe ratio 0.51 0.52 0.59 0.55 0.67 0.55 0.64
Sortino ratio 0.81 0.84 0.94 0.92 1.13 0.90 1.03
Treynor ratio 7.55 8.43 10.30 9.66 12.39 9.59 12.09
Value-at-Risk (%) 41.34 45.49 42.06 38.96 41.53 41.66 44.15
Max drawdown (%) 50.39 49.48 48.86 44.16 49.65 45.29 57.21
Max time under water (months) 73.00 90.00 83.00 74.00 62.00 74.00 80.00
Skewness -0.51 -0.11 -0.58 0.01 -0.16 -0.21 -0.37
Kurtosis 4.87 6.77 5.16 6.24 5.76 5.72 5.42
Monthly turnover (%) 12.11 61.86 14.1 73.12 18.01 80.19

Table 3.1: Performance statistics of the different back tests. The postfix number following the
name of the stochastic process indicates which data set is used.

VAR process. However, a recent study by Frazzini et al. [2012] finds transaction costs to be
considerably smaller than previous literature suggests. For the period 1998-2011, their Table II
provides mean transaction costs of 13bps and a median of 10bps. The annualized excess return
of the models using the VAR(1) generated scenarios would therefore more than outweigh the
trading costs for the 10 and 17 industry portfolios, making the results economically relevant.

3.4.2 Factor Analysis

The performance assessment of the portfolio rule using the two different scenario generation
methods is based on annualized alpha. Alpha represents the return of a strategy beyond what
is to be expected given the exposure to the relevant risk factors (for which a corresponding risk
premium should be earned). While the Capital Asset Pricing Model (CAPM) implies that the
excess return of the market portfolio (EXMKT ) over the risk-free rate rf is the only explaining
risk factor, the Arbitrage Pricing Theory provides the theoretical foundation for including addi-
tional risk factors beyond the market portfolio. Fama and French [1993], for short FF, identified
empirically additional return-predicting risk factors: the excess return on a portfolio of small
stocks over a portfolio of large stocks (SMB) and the excess return on a portfolio of high book-
to-market stocks over a portfolio of low book-to-market stocks (HML). Carhart [1997], short
FFC, shows that in addition to the three Fama-French factors an additional fourth predictor,
the momentum factor (UMD), should be considered. Momentum in a stock is described as the
tendency for the stock price to continue rising if it is going up and to continue declining if it
is going down. The UMD can be calculated by subtracting the equally weighted average of
the highest performing firms from the equally weighted average of the lowest performing firms,
lagged by one month. Specifically, we conduct the following regressions on the portfolio return
Rp,t

Rp,t = α+
∑
j

Fj,tβj + εt, (3.7)

with Fj,t ∈ {EXMKTt} for the CAPM model, Fj,t ∈ {EXMKTt, SMBt, HMLt} for the FF
model, and Fj,t ∈ {EXMKTt, SMBt, HMLt, UMDt} for the FFC model. The time series of
all risk factors are available on Kenneth Frenchs website.

In order to investigate if any excess return can be found and the significance of it, we apply the
classical CAPM framework along with the Fama-French three factor model, and Fama-French-
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Carhart four factor model. We test the significance of the excess return in terms of p-values
and analyze if it can be ascribed to value, small cap and/or momentum. The assessment of
the out-of-sample back tests when using the three different data sets can be found in Table 3.2,
which shows that a positive excess return exists when using the VAR process on all data sets.

CAPM FF FFC

α (%) p-value α (%) p-value α (%) p-value

VAR(1)5 2.30 0.02 2.38 0.02 2.23 0.03
GBM5 0.80 0.30 1.95 0.01 0.75 0.31

VAR(1)10 3.85 0.00 2.76 0.01 2.98 0.01
GBM10 1.64 0.07 1.71 0.06 0.28 0.75

VAR(1)17 3.69 0.00 2.21 0.06 1.91 0.11
GBM17 1.71 0.07 1.45 0.11 -0.13 0.88

Table 3.2: Assessment of annualized α

Furthermore, we observe low p-values, indicating that the excess returns are not a coincidence.
Contrary, the geometric Brownian motion provides only a negligible excess return which is non-
significant for the most part.
When reducing the granularity of the industry portfolios from 5 to 10 or 17, we observe that
the VAR-process leads to distinctively higher excess returns, showing that the model is able to
use a more elaborate dependency pattern. Contrary, no improvement is observed for GBM. The
VAR process is therefore considered to be economically helpful in predicting future returns and
to outperformn the market by generating risk-adjusted excess returns. Finally, we extend the
analysis to considering the Sharpe ratio of the strategies.

3.4.3 Sharpe Ratio Analysis

To further investigate the excess performance generated from the assumed predictability of re-
turns, we analyze the Sharpe ratio of the strategies and the difference between them.
The Sharpe ratio is one of the most widely used performance measures of investment strategies.
Though, it has been argued that this measure is not appropriate when returns are not normally
distributed, e.g. when returns experience skewness and leptokurtosis, or are autocorrelated. It is
therefore relevant to examine the difference between multiple Sharpe ratios in a robust manner.
A popular method for evaluating the difference between two strategies is the test of Jobson and
Korkie [1981], which has been corrected by Memmel [2003]. Later, Ledoit and Wolf [2008] discuss
inference methods that are more generally valid. They suggest computing a HAC standard error
for the difference of the estimated Sharpe ratios by the methods of Andrews [1991] and Andrews
and Monahan [1992]. Furthermore, they propose to construct a two-sided bootstrap confidence
interval for the difference. In this paper, we chose to follow the approach of Ledoit and Wolf and
compute p-values in order to test for a significant difference between Sharpe ratios using block
bootstrapping,4.

First, we calculate the Sharpe ratio of the different out-of-sample excess returns by dividing
the mean of the excess returns over the risk free rate by the standard deviation. Following this

4Implementations of the three methods are made available by Ledoit and Wolf at http://www.econ.uzh.ch/

en/people/faculty/wolf/publications.html
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procedure, we analyze the difference between the Sharpe ratios from the VAR(1)-process and
the Sharpe ratios from the geometric Brownian motion. The comparison is provided both to the
market and between the two stochastic processes.

Sharpe LW
Market 0.51
VAR(1)5 0.59 0.28
GBM5 0.52 0.91

(0.25)
VAR(1)10 0.67 0.04
GBM10 0.55 0.61

(0.16)
VAR(1)17 0.64 0.13
GBM17 0.55 0.61

(0.30)

Table 3.3: Sharpe ratios of the portfolio rule when using the two different scenario generation
methods. p-values of the difference between the Sharpe ratio of the market and a strategy is
indicated in column LW without parentheses. p-values in parentheses show the significance of
the difference between the Sharpe ratio of the VAR-process and the GBM. The postfix number
following the name of the stochastic process indicates which data set is used.

Our results are summarized in Table 3.3, which shows that using the VAR process improves
the Sharpe ratio, i.e. the inclusion of linear dependencies between the industries is beneficial.
We observe a clear distinction between Sharpe ratios of the two processes, which is in line with
the results of the excess returns using the different factor models. The VAR process provides
significant or close to significant values, where the geometric Brownian motion only provides
comparable Sharpe ratios than the market. When analyzing the difference between the Sharpe
ratios of the geometric Brownian motion and the VAR-process, we find further support for
the superiority of the latter, which suggests that including the predictability component and
considering the linear dependencies between industries provides an economical value in addition
to the statistical significance found in the previous section.

3.5 Conclusion

We show that returns of some industries lead those of others giving rise to cross-industry pre-
dictability of returns. We assume that this behavior is due to limited information processing,
with the consequence that not all market information is included instantaneously, but only with
a lag in time. We support our hypothesis by analyzing returns of 5, 10 and 17 industry portfolios
using a VAR-process and map significant autocorrelation and cross-autocorrelation. This leads
to the finding of supply chain predictability of returns, hence, returns of one industry earlier
in the supply chain predict those of others later. Furthermore, we analyze this behavior in the
context of other factors proposed in the academic literature, which are known to forecast returns,
and we show that these do not explain the discovered patterns. Finally, we conduct an empirical
out-of-sample back test to investigate if the apparent in-sample statistically significant return
predictability is also economically relevant in an asset allocation framework. We find significant
excess returns when accounting for several prominent risk factors and a noteworthy increase in
Sharpe ratios, which leads us to conclude that cross-industry return predictability exists and
that this predictability is economically relevant in portfolio selection.
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Moments
Thomas Trier Bjerring · Kourosh Marjani Rasmussen · Alex Weissensteiner

Status: Submitted, Journal of Asset Management

Abstract: We investigate the diversification benefits of combining commodi-
ties with a traditional equity portfolio, while considering higher order sta-
tistical moments and seasonality. The literature suggests that the in-sample
diversification benefits of commodities in portfolio optimization are not pre-
served out-of-sample. We provide an extensive in-sample and out-of-sample
analysis with ten commodities and a stock index using the classical tangency
mean-variance model and the maximum Omega ratio model. We show that
seasonality in commodity returns should be considered, and leads to signifi-
cant excess return and increase in Sharpe ratio.

Keywords: Commodity Futures, Sieve Bootstrapping, Omega Ratio, Portfo-
lio Optimization, Stochastic Programming

4.1 Introduction

In recent years, the consideration of alternative investments in portfolio selection has received
increasing attention, which among others has lead to an escalating financialization of the com-
modity markets. Several studies find beneficial properties when adding commodity futures to
an already diversified equity or equity/bond portfolio. The natural justification of including
commodity futures in an investment portfolio is the natural hedge they provide against infla-
tion, see Bodie [1983]. An inflationary environment is characterized by a sustained increase in
commodity prices, meaning that long positions in future contracts increase in value during such
periods, where stocks and bonds, by contrast, generally display poor performance [see Bodie,
1983, Greer, 1978, Halpern and Warsager, 1998, Becker and Finnerty, 2000]. Furthermore, re-
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turns of commodity investments show low or even negative correlation with the returns of assets
that belong to traditional asset classes such as equity or debt holdings. This can be ascribed to
the underlying factors that drive commodity prices (e.g., weather and geopolitical events, supply
and demand in the physical production, or event risk). These factors are distinctly different from
what determines the value of stocks and bonds [see Geman, 2005, for a dicussion]. In fact, a
number of empirical studies confirm low correlation over certain periods of time [see Bodie and
Rosansky, 1980, Erb and Harvey, 2006, Gorton and Rouwenhorst, 2006, Geman and Kharoubi,
2008, Büyüksahin et al., 2010, Chong and Miffre, 2010]. Consequently, diversification benefits,
i.e. reduction of risk for any given level of expected return, emerge.

In this paper we focus on the role of commodities in tactical asset allocation decisions, when
combined with a broad equity index. A strand of literature investigates whether incorporating
commodities in the asset menu improves the risk-return profile of investors’ portfolios. Bodie
and Rosansky [1980], Fortenbery and Hauser [1990] and Conover et al. [2010] find that investors
can improve their risk return payoff by switching from a pure stock portfolio to a portfolio with
stocks and commodities over the periods 1950-1976, 1976-1985, and 1970-2007, respectively.
Georgiev [2001] performs a similar analysis over the period 1995-2005 and finds an increase in
the Sharpe ratio. In addition, a number of studies investigate the role of commodities under
the Markowitz mean-variance asset allocation setting and reach similar conclusions. Ankrim
and Hensel [1993] study the diversification benefits of investing in commodities over the period
1972-1990, and conclude that expanding the investable universe with commodities improves the
risk-return trade-off of optimal portfolios for any given risk tolerance coefficient. Satyanarayan
and Varangis [1996] and Abanomey and Mathur [1999] examine whether the efficient frontier
changes when commodity futures are incorporated into international assets universes over the
periods 1970-1992 and 1970-1995, respectively. They find that the inclusion of commodities
shifts the efficient frontier upwards. Anson [1999] addresses the same question from another
perspective. He forms optimal portfolios by maximizing a quadratic expected utility function
for a range of risk aversion coefficients over the period 1974-1997. He concludes that adding
commodities to a portfolio of stocks and bonds increases the Sharpe ratio of optimal portfolios.
Jensen et al. [2000] also find that including commodities in a traditional asset universe improves
the risk-return profile of the efficient portfolios over the period 1973-1997. Idzorek et al. [2007]
performs a similar empirical analysis over the period 1970-2005 with comparable conclusions.
Hence, the above mentioned literature has provided unanimous evidence that an investor could
benefit from including commodities in a diversified portfolio. However, this conclusion is based
on an in-sample mean-variance comparison of the efficient frontier with and without inclusion
of commodities. Daskalaki and Skiadopoulos [2011] revisit the in-sample setting by employing
mean-variance and non-mean-variance spanning tests and confirm the diversification benefits of
including commodities in the asset menu. They then form optimal portfolios by taking into
account the higher order moments of the portfolio return distribution and asses their out-of-
sample performance. They find that the adherent increase in Sharpe ratio is not preserved from
the in-sample setting, and hereby challenge the alleged diversification benefits of commodities.
A criticism that is often raised against the Sharpe ratio and the mean-variance framework is that
it is only appropriate when the portfolio returns are elliptically distributed. Hence, only the first
and second order statistical moments of the portfolio returns are taken into account, and higher
order moments are neglected, i.e. if asset returns exhibit fat tails, then the Sharpe Ratio yields
counter-intuitive performance evaluations. Therefore, maximization of the portfolio Sharpe ratio
is not appropriate when returns do not follow a normal or elliptical distribution. There exists
ample empirical evidence that returns of traditional financial products are rarely normally dis-
tributed, e.g. Peiro [1999] illustrates this for stock indexes, while Gorton and Rouwenhorst [2006]
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and Kat and Oomen [2007] reach the same conclusions for commodity futures. Hence, the usual
adapted approach based on the first two statistical moments may not be suited to investigate
the in-sample and out-of-sample performance of including commodities in the asset menu.

This paper adds to the existing literature on the role of commodities in portfolio optimiza-
tion by analyzing the empirical distribution of the Sharpe ratio of various commodities along
with the impact of seasonality in commodity returns on the allocation of assets in an in-sample
and out-of-sample mean-variance setting. Furthermore, we propose to use the Omega ratio in
portfolio optimization in order to account for higher order statistical moments. We conduct our
analysis using monthly data for 10 highly traded continuous future contracts on commodities
together with a broad equity portfolio over the period 1975.01 - 2014.12.

The rest of the paper is structured as follows. Section 2 outlines the data used throughout
the paper. Section 3 conducts an in-sample analysis of the empirical distribution of the Sharpe
ratio of different continuous commodity future contracts. Section 4 describes the models. Sec-
tion 5 computes the efficient frontier when considering the variance and lower partial moment
as risk measures. Section 6 conducts an out-of-sample analysis of the performance of the com-
modity/equity portfolios using the different described models. Finally, Section 7 summarizes the
results.

4.2 Data

We use monthly returns of ten active traded commodity futures and of the U.S. equity market.
The commodity futures are collected from Bloomberg, while we use the value-weighted returns
of all NYSE, AMEX, and NASDAQ firms to proxy the U.S. equity market, which are provided
as market returns in French’s data library.1 We use ten continuous future contracts on individual
commodities from distinctively different categories: Gold, Silver, Platinum, Copper, Soybean,
Lumber, Coffee, Feeder Cattle, Lean Hogs, and Live Cattle. The underlying dynamics of com-
modity returns differ from those of stocks, as prices are mainly driven by demand and supply
shocks, and consumer behavior [see Gorton et al., 2013].

The properties of commodity derivatives and their correlation to the stock and bond markets
have been explored by Gorton and Rouwenhorst [2006], who find that the long term correlation
of an equally weighted index of commodity futures to the stock- and bond market is negative.
Furthermore, they also report that the short horizon correlation is nearly zero, making com-
modity futures interesting components of a well-diversified portfolio. We find that our chosen
commodities all exhibit low correlation to the stock market, see Table 4.1.

The assets with the lowest correlation to the equity market is Gold followed by Coffee and
Cattle. The low correlation to the equity markets is not the only attractive property of commodi-
ties. Empirical evidence shows that under certain market conditions commodities can provide
returns similar to equity, e.g. during periods with high inflation or around crises in traditional
financial markets [see Skiadopoulos, 2012, Bhardwaj et al., 2015]. We summarize the statistical
moments of the individual considered assets in Table 4.2.

Out of all considered assets, equities have the highest average return and the lowest standard
deviation. Furthermore, while equities are normally left skewed, all the considered commodities
are right skewed, illustrating one of the differences between equity and commodities.

1French’s Data Library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Gold Silver Platinum Copper Soybean Lumber Coffee Feeder Lean Live
Cattle Hogs Cattle

Silver 0.74
Platinum 0.66 0.65
Copper 0.35 0.38 0.42
Soybean 0.13 0.17 0.15 0.25
Lumber 0.05 0.09 0.13 0.12 0.08
Coffee 0.06 0.11 0.13 0.12 0.21 0.11
FeederCattle -0.04 0.03 0.08 0.09 0.00 0.11 -0.07
LeanHogs 0.05 0.10 0.07 0.03 0.08 0.09 -0.04 0.27
LiveCattle 0.03 0.06 0.14 0.08 0.04 0.07 -0.02 0.69 0.26
Equity 0.04 0.15 0.16 0.30 0.11 0.21 0.04 0.09 0.05 0.05

Table 4.1: Correlation matrix

Mean St.dev Skewness Excess kurtosis
Gold 0.56 5.71 0.66 6.91
Silver 0.72 9.42 0.53 8.07
Platinum 0.70 7.52 0.27 6.85
Copper 0.65 7.62 0.08 5.63
Soybean 0.31 8.13 0.38 5.09
Lumber 0.68 9.60 0.47 3.95
Coffee 0.80 11.17 1.12 6.55
Feeder Cattle 0.53 4.79 0.10 4.80
Lean Hogs 0.49 9.20 0.19 4.34
Live Cattle 0.44 5.27 0.02 3.72
Equity 1.09 4.49 -0.65 5.22

Table 4.2: Summary statistics showing arithmetic mean, standard deviation, skewness and excess
kurtosis of monthly returns

4.3 Distribution of the Sharpe Ratio

Investment strategies and financial assets are often assessed by their Sharpe ratio, despite the
particular measure having several clear drawbacks, such as the assumption of returns being i.i.d
and normal distributed [see Ledoit and Wolf, 2008]. Though, as this measure is the adopted
industry standard, we analyze our investment universe in this context to further uncover the
usefulness of commodities. The true parameters of financial assets are not observable, and the
Sharpe ratios therefore have to be estimated from historical return data. In order to compare
different Sharpe ratios when returns are not normal distributed, we have to rely on statistical
inference, such as hypothesis tests or confidence intervals. Stocks and bonds typically experience
only minor serial correlation usually expressed in form of volatility clustering. Contrary, many
commodities show strong intra-annual seasonality, which will have a direct impact on the Sharpe
ratio. In this section, we evaluate the autocorrelation of our considered commodities and the
equity portfolio, and bootstrap Sharpe ratio probability distributions.

4.3.1 Seasonal Components

Seasonality is known to be one of the empirical characteristics that make commodities strik-
ingly different from stocks, bonds, and other conventional financial products [for a discussion
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see Routledge et al., 2000]. Rational behavior of market participants alone cannot fully explain
the presence of seasonality in the stock and bond markets, while the existence in the commodity
markets is potentially explainable by the cyclic nature of production. As agricultural commodi-
ties must follow their own crop cycle which repeats the same seasonal patterns year after year,
observed commodity prices exhibit nonstationarities along the same seasonal lines. Crop cycle-
related seasonalities in agricultural commodities are documented by Roll [1984], Anderson [1985],
Milonas and Vora [1985], Kenyon et al. [1987], and Fama and French [1987]. Seasonality is also
found in the energy sector among fossil fuels, natural gas futures [see Brown and Yücel, 2008],
and refined products such as gasoline, heating oil and fuel oil futures [see Adrangi et al., 2001].

The seasonality for each commodity may be unique due to different harvesting seasons and
availability. Thus, the predictable components for each asset have to be considered individually.
We uncover the seasonal component for each asset in our investment universe by considering the
optimal number of lags according to Akaike’s information criterion (AIC) when fitting an AR
process to the individual time series of monthly returns.

Gold Silver Platinum Copper Soybean Lumber Coffee Feeder Lean Live Equity
Cattle Hogs Cattle

Lags 5 0 0 0 11 12 7 22 24 23 1

Table 4.3: Optimal number of lags according to AIC

Table 4.3 shows that the agricultural commodities Soybean, Lumber, and Coffee all have lags
up to 12 months, which coincide with the commodities expected production cycle. Cattle and
Hogs show substantial predictability in terms of lags being significant on up to 24 months, or two
years. The Metal commodities show no seasonality, expect for gold. The seasonality of gold is
generally assumed to be demand driven and closely linked to holiday shopping and the wedding
season of India and the U.S., which occur end of year and late spring, respectively [see Baur, 2013].

We are interested in the Sharpe ratio of the different considered assets in our investment
universe. As the illustrated seasonal behavior will have a huge impact on the performance
measure at different points in time, we resort to block bootstrap probability distributions for the
Sharpe ratio, instead of relying on individual statistics.

4.3.2 Sharpe ratio

The Sharpe ratio is defined as the excess return over the risk free rate of a considered asset or
portfolio divided by the standard deviation. In order to create a more refined picture of the
benefit of incorporating commodities in a portfolio and the impact on the corresponding Sharpe
ratio, we bootstrap individual distributions of the performance measure for each of the considered
assets. Given that regular bootstrapping requires i.i.d samples, which does not comply with our
data due to the presence of seasonality, we resort to block bootstrapping. Here, blocks of data are
sampled from the data set instead of single data points, hence, preserving the autocorrelation of
the data. We use circular block bootstrapping to generate 1000 paths of three years of monthly
data. Several criteria have been proposed for selecting the block size, [see Politis and Romano,
1994, Politis and White, 2004, Patton et al., 2009, Hall et al., 1995], though in this case, the
block size of the considered asset is fixed to the optimal number of lags plus one in order to
control for the seasonal patterns. In the case of no predictive power, i.e. when an asset follows
a geometric Brownian motion, the optimal number of lags is zero. As a consequence, the block
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size is one, and the method coincides with the regular bootstrap approach. After constructing
a sample path of 36 months for a given asset, the Sharpe ratio is computed with respect to the
risk free rate for the given blocks. The risk free rate is taken as the one-month Treasury bill rate.
We repeat the block bootstrapping procedure for each individual asset and compute 0.05, 0.25,
0.75, and 0.95 quantiles along with the Sharpe ratio over the complete data period.

Figure 4.1: Block bootstrapped distributions of Sharpe ratios. The light gray line corresponds
to 0.05 and 0.95 quantiles, while the dark gray line covers the distance between the 0.25 and 0.75
quantiles. The bullets represents the average Sharpe ratio of the given asset.

Figure 4.1 shows that the stock market has a distinctively higher average Sharpe ratio than
the individual commodities. Furthermore, we observe that most commodities have Sharpe ratios
centered around zero or even negative. Hence, naively incorporating commodities in long-term
buy-and-hold strategies will not improve the performance. Though, the quantiles indicate that
temporary market situations exist, where commodities can provide a valuable alternative to the
stock market. The broad stock market does in rare cases experience near-zero or negative Sharpe
ratios. Given the correlation structure, it is natural to assume that in those situations commodi-
ties would play an important role in optimizing the return-risk relationship of a portfolio. To
examine this further, we conduct a similar bootstrap analysis of the correlation coefficient of
a given commodity to the equity market. We bootstrap three year sample paths of monthly
returns for a given commodity and the equity market using the block size of the commodity, and
compute the correlation coefficient over the constructed period.

Figure 4.2 shows that the correlation of most of the considered commodities extend into the
negative region, making them a valid hedging instrument under certain market conditions. Addi-
tionally, we observe that the 0.95-quantile of the correlation coefficient of almost all commodities
with the stock portfolio is low, supporting the inclusion of commodities in a stock portfolio. As
a comparison, the average correlation of the Fama-French 30 industry portfolios is equal to 0.59
over the same period.

4.4 Models

The benefits of including commodities has typically been analyzed in the mean-variance setting.
A portfolio is then constructed to either minimize the portfolio variance or maximize the Sharpe
ratio. In order not to confine ourself to Gaussian or elliptical distributions, we consider stochastic
programming to maximize the Omega ratio. In this section, we first highlight a semi-parametric
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Figure 4.2: Block bootstrapped distributions of the correlation coefficient of the individual com-
modities to the market. The light gray line corresponds to 0.05 and 0.95 quantiles, while the
dark gray line covers the distance between the 0.25 and 0.75 quantiles. The bullets represents
the average correlation of the given asset.

scenario generation method to be used in a stochastic programming framework, which incorpo-
rates the potential seasonal behavior of the considered commodities. We then provide the model
formulations of the classical tangency mean-variance model and the Omega ratio model.

4.4.1 Sieve Bootstrapping

Stochastic programming requires a discrete approximation of the underlying stochastic process
at hand. Given the event history up to a particular time, the uncertainty in the next period
is characterized by finitely many possible realizations of a random variable. Usually, scenarios
are created by either taking historic realizations of past returns as possible future outcomes or
generated by sophisticated models [for an overview, see Kaut and Wallace, 2007].

The application of stochastic programming to commodities requires a discrete representation
of the uncertainty which incorporates the distinctive seasonal patterns that we observe for most of
the commodities. We propose the application of sieve bootstrapping, which is a semi-parametric
approach to model time series data which experience autocorrelation [see Geman and Hwang,
1982, Bühlmann et al., 1997]. Regular bootstrapping requires i.i.d. samples, and is therefore
usually inadequate for modeling time series data. Contrary, the sieve bootstrap procedure fits
an autoregressive process with order p to the original data and generates bootstrap samples by
resampling the residuals uniformly. As the residuals of the autoregressive model are i.i.d., it is
reasonable to resample those randomly - similar to the original bootstrap approach. Comparable
to the choice of the block size for block bootstrapping, selecting the lag order of the autogressive
model is crucial to ensure i.i.d. residuals. Therefore, we choose to rely on AIC to select the order
p. The autoregressive model fitted to the data is of the form

Yt = aYt−1 + ...+ kYt−p + k + εt,

where Y is a random variable, a to k are fitted parameters, p is the maximum number of
lags according to the AIC criterion, k is constant and ε are the residuals. The considered
commodities experience noticeable different seasonality patterns and univariate AR(p) models are
therefore fitted individually to each asset. Following the parameter estimation, we sample from
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the multivariate residual distribution to construct a set of scenarios preserving the correlation
structure between the considered assets along with higher statistical moments.

Mean-Variance Tangency Portfolio

Portfolio selection in a mean-variance framework is based on the assumption, that asset returns
are normally distributed. We consider the mean-variance model where the investor is faced with
the decision on how to optimally allocate funds to N risky assets. This model maximizes the
Sharpe ratio of the investor’s portfolio [see Sharpe, 1966]. However, naively using the Sharpe
ratio as objective function gives rise to a non-linear problem formulation, and cannot be solved
analytically when including constraints. The non-linear problem can be formulated as

max µ>x

x>Σx
s.t.

1x = 1
x ≥ 0,

where x is the vector of portfolio weights, and µ and Σ denotes the expected return and the
variance-covariance matrix, respectively. The optimization of the nonlinear performance ratio
has typically been addressed by introducing a bi-objective equivalent along with a risk aversion
parameter. Hence, the maximum Sharpe ratio portfolio could be obtained by solving a series
of quadratic programming problems with the objective function, max µ>x − λx>Σx, for recur-
sively increasing values of λ. Stoyanov et al. [2007] show that the model can be formulated as a
fractional-quadratic programming problem, hereby reducing the number of quadratic problems
to be solved to one. They introduce an auxiliary scaling variable z to enable the transformation
of the nonlinear programming formulation to a quadratic problem that maximizes the Sharpe
ratio. The model can then be formulates as

min x>Σx
s.t.

µjxj − zrf ≥ 1
n∑
j=1

xj = z,

xj ≥ 0,

Finally, the optimal computed solution x∗ should be normalized by z to be rescaled to the original
decision space.

Omega-Ratio

Several alternatives to the optimization of the Sharpe ratio have been proposed. Most prominent
is Sortino and Price [1994], who replace the standard deviation with the downside deviation.
Recently, Keating and Shadwick [2002] introduce the Omega ratio which incorporates higher
moment information of a distribution of returns, and captures both the downside and upside
potential of a portfolio. The rationale behind the formulation of the Omega ratio is that, given
a predetermined threshold τ , portfolio returns over the target τ are considered as gains, whereas
returns below the threshold are treated as losses. The Omega ratio can be defined as the ratio
between the expected value of the gains and the expected value of the losses. The threshold τ
is selected as a predefined benchmark such as the market return or the risk-free rate. In other
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words, the Omega ratio considers the first order lower partial moment as a risk measure. Lower
partial moments have already been considered as risk measures by Nawrocki [1999] and Ogryczak
and Ruszczyński [1999]. Unlike the variance, the measure can cope with skewed returns and is
therefore more suitable for handling non-normally distributed returns.

The original formulation of the Omega ratio was computational intractable, and was, as a
consequence, mostly used for evaluating investment strategies ex post [see Bertrand and Prigent,
2011]. The ratio is defined in terms of a cumulative distribution F of a portfolio, where

Ω(τ) =

∫∞
τ

(1− F (x)) dx∫ τ
−∞ F (x)dx

.

The Omega ratio is visualized in Figure 4.3, and quantifies the area under the cumulative dis-
tribution left of the target value τ , and the area above it to the right. Mausser et al. [2013]

 

τ

0

0.5

1

−3 0 3

Figure 4.3: The cumulative probability distribution, where τ and the dashed line illustrates the
threshold value.

demonstrate how a simple transformation of the problem variables leads to a LP solvable model
for maximizing the Omega ratio. The only requirement is that the expected return of the optimal
portfolio is larger than that of the benchmark τ . More precisely, the problem is reformulated
as a linear-fractional programming problem, where the portfolio downside deviation from the
threshold is modeled using a continuous variable. Kapsos et al. [2014b] show how the Omega
ratio maximization problem can be reformulated as a quasi-concave optimization problem, and
thus be solvable in polynomial time. Following this approach, Kapsos et al. [2014a] introduce a
worst-case variant of the model maximizing the Omega ratio and investigate its properties under
three types of uncertainty for the probability distribution of the returns. Finally, Guastaroba
et al. [2016] use the maximization of the Omega ratio for index tracking, and extend the frac-
tional programming model formulation to consider a distribution for the threshold τ instead of
a single parametric value.

The downside function of the Omega ratio is usually expressed in terms of either the semi-
standard deviation or the first lower partial moment. We will use the later definition in this
paper as it can be expressed with a linear formulation contrary to the first one, which requires
a quadratic term. The first lower partial moment can be defined as
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δτ = E{(Rx − τ)−} = E{max{τ −Rx, 0}}.

where δτ is LP computable for returns represented by discrete representations as follows, assum-
ing pt probability for each scenario (realization)

δτ (Rx) = min

{
S∑
s=1

dsps

∣∣∣∣∣ ds ≥ τ −
n∑
j=1

rj,sxj , ds ≥ 0

}
.

We follow the fractional linear programming approach suggested by Mausser et al. [2013] under
the assumption that µ>x > τ , and we adopt the suggestion of Guastaroba et al. [2016] by in-
troducing a big M constraint on the risk function. Hence, we ensure that δτ cannot attain the
value zero hereby making the return/risk fraction infinite. We end up with the following model
for the maximization of the Omega ratio:

max

n∑
j=1

µjxj − τz

s.t.
n∑
j=1

xj = z

z ≤ M
n∑
j=1

rj,sxj = ys

S∑
s=1

dsps = 1

ds ≥ τz − ys
ds ≥ 0 xj ≥ 0,

where z is an auxiliary scaling variable. The optimal portfolio weights w∗ are found as the
normalized solution according to z, w∗j = xj/z.

4.5 The Efficient Frontier

In this section, we examine the in-sample diversification benefits of commodity futures when
applying the optimal mean-variance portfolio and the maximization of the Omega ratio and
considering seasonality patterns. We compare the efficient frontier when the two portfolio rules
rely only on sample parameters estimated directly from historical data to those when shieve
bootstrapping is used. We illustrate the difference using the first 10 years of monthly returns
spanning over the period 1975.01-1985.01 and we examine the efficient frontiers. The data window
is intensionally chosen to be large to reduce the risk of parameter uncertainty. Furthermore, we
limit the maximum number of lags to 12 to avoid overfitting the data.

Figure 4.4 shows that including seasonality in the mean and variance estimation extends the
efficient frontier into a region which was not covered by a setting without predictability. It can
be observed that a small risk reduction can be found when including seasonality, along with a
significant increase in expected return. The maximum Omega ratio portfolios do in both cases
represent more risk adverse strategies than their corresponding mean-variance counterparts when
risk is evaluated in terms of standard deviation. This is found to be rooted in the consideration
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Figure 4.4: Efficient mean-variance frontier for the period 1975.01-1985.01. The solid and dashed
lines represent the efficient frontiers when including or excluding seasonality, respectively. The
tangency portfolio for each frontier is illustrated with a bullet. The gray bullets represent the
corresponding maximum Omega ratio portfolios. The risk free rate is fixed to zero.

of higher statistical moments, which leads to a more prudent asset allocation.

In order to analyze whether the benefits of considering predictability have economic relevance,
it is necessary to consider the portfolio rules in an out-of-sample environment. In such an out-
of-sample setting, most papers find less support for the inclusion of commodities in an already
diversified equity or equity/bond portfolio.

4.6 Empirical Application

The classical mean-variance model using the sample mean and covariance matrix as inputs has
been shown to perform poorly out-of-sample, and that the apparent in-sample diversification
benefits of including commodities in a portfolio are not preserved. In order to test our hypoth-
esis that neglecting seasonality when using commodities patterns are one of the reasons for this
poor performance, we test the tangency mean-variance model and maximum Omega ratio model,
when parameters are estimated from scenarios generated using the shieve bootstrap procedure
and when the sample parameters are estimated directly from data.

The out-of-sample analysis is based on the data set earlier presented and is conducted such
that we only use data up to a certain point in time to perform a portfolio decision upon. The
outcome of a decision is computed using the actual end of month returns. We rebalance each
portfolio rule on a monthly frequency and use 10 years of monthly data for parameter estimation.
After computing the realized returns of a given month, we move one month ahead in our data set
and repeat the procedure. In order to consider time varying investment opportunities, we adopt
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a rolling parameter window approach, meaning that every time we move one month ahead in our
back test, we discard the oldest data point and include the newest available one. Furthermore,
we limit the shieve bootstrap approach to a maximum of 12 lags to avoid overfitting the data,
and to extend the back test period (as some commodities experience up to 24 significant time
lags). The lag-structure is re-estimated for each time interval, and we exclude short-sales.

4.6.1 Performance Measures

We test the quality of our out-of-sample results using different performance measures on each
of the four conducted back tests, i.e. maximum Omega ratio using historical data or shieve
bootstrapping, and the tangency mean-variance model using sample parameters from historical
data or shieve bootstrapping.
One of the measures we use to asses the performance is annualized excess return over what would
be expected given the exposure to the relevant risk factors (for which a corresponding risk pre-
mium should be earned). While the Capital Asset Pricing Model (CAPM) implies that the excess
return of the market portfolio (EXMKT ) over the risk-free rate r is the only explaining risk
factor, the Arbitrage Pricing Theory provides the theoretical foundation for including arbitrary
(additional) risk factors beyond the market portfolio. Fama and French [1993], for short FF,
identified empirically additional return-predicting risk factors: the excess return on a portfolio of
small stocks over a portfolio of large stocks (SMB) and the excess return on a portfolio of high
book-to-market stocks over a portfolio of low book-to-market stocks (HML). Carhart [1997]
shows that a fourth predictor should be considered in addition to the three Fama-French factors,
the momentum factor (UMD), short FFC. Momentum in a stock is described as the tendency
for the stock price to continue rising if it is going up and to continue declining if it is going
down. The UMD can be calculated by subtracting the equally weighted average of the highest
performing firms from the equally weighted average of the lowest performing firms, lagged by
one month. Specifically, we conduct the following regressions

Rp,t − rt = α+
∑
j

Fj,tβj + εt,

with Fj,t ∈ {EXMKTt} for the CAPM model, Fj,t ∈ {EXMKTt, SMBt, HMLt} for the FF
model, and Fj,t ∈ {EXMKTt, SMBt, HMLt, UMDt} for the FFC model. The time series of
all risk factors are available on Kenneth French’s website.

Several performance ratios have be developed over the years, but we will in our analysis limit
ourself to four measures i.e. the Sharpe ratio, the Sortino ratio, the Omega ratio, and the Treynor
ratio. The most prominent measure is the Sharpe ratio which is defined as the excess return over
the standard deviation. Sortino and Price [1994] suggests using the Sortino ratio instead, which
replaces the standard deviation of the Sharpe ratio with the downside deviation. The Treynor
ratio divides the average annualized return with the beta from the CAPM analysis, hereby
quantifying the relationship between return and systematic risk. We extend our analysis to
examining the Cornish-Fisher expansion of Value-at-Risk [see Cornish and Fisher, 1938], which
considers skewness and excess kurtosis contrary to the traditional formulation. Furthermore,
we investigate the maximum drawdown of a portfolio rule. A drawdown is measured on the
cumulative returns of a portfolio rule from the time a retrenchment begins to when a new high
is reached. Additionally, the maximum Time under Water is computed, which measures the
maximum time spent to recovery from a drawdown.
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4.6.2 Out-of-Sample Analysis

We start the out-of-sample back test on January 1985 to allow for a sufficient parameter estima-
tion window of 10 years of monthly return data. The back test is conducted until December 2014.
The length of the back test is limited to this period due to data availability from Bloomberg.
This results in a total of 360 trading months. We have summarized our key findings of the
four out-of-sample backtests using the defined investment menu of one equity portfolio and 10
commodities in the Table 4.4. In the CAPM analysis the market is assumed to correspond to
our equity portfolio. Furthermore, we use the one-month treasury bill rate as risk free rate, rf .

Market Omegaboot Omegahist.data TPboot TPhist.data
AlphaCAPM (%) 8.07 -1.76 6.94 -1.97
(p.value) (0.00) (0.27) (0.01) (0.22)
AlphaFF (%) 9.46 1.24 8.38 1.07
(p.value) (0.00) (0.42) (0.00) (0.49)
AlphaFFC (%) 9.47 1.14 8.44 1.03
(p.value) (0.00) (0.46) (0.00) (0.51)
Beta 1.00 0.38 0.58 0.40 0.59
Sharpe ratio 0.30 0.82 0.42 0.78 0.40
Sortino ratio 0.43 1.43 0.64 1.29 0.60
Omega ratio 1.49 2.25 1.72 2.19 1.70
Treynor ratio 4.71 34.83 8.89 29.35 8.60
99% VaR (Cornish-Fisher) -49.18 -41.93 -38.01 -47.55 -39.99
Max Drawdown (%) 54.36 36.08 35.68 38.14 37.22
Max Time under Water (months) 73 23 67 29 72
Skewness -0.92 -0.37 -0.76 -0.73 -0.87
Excess Kurtosis 5.72 5.37 5.68 6.53 6.08
Positive months (%) 62.50 63.61 62.78 64.72 62.78
Average monthly turnover (%) 64.39 5.7 60.80 4.71

Table 4.4: Summary statistics for the out-of-sample back test of the equity market and the four
portfolio strategies, where Omega and TP refer to the maximum Omega ratio portfolio and the
tangency mean-variance portfolio, respectively. The prefix following a portfolio rule indicates
the parameter estimation process.

Table 4.4 shows that the consideration of seasonality results in a significant increase in excess
return compared to the pure equity portfolio, while the traditional sample approach of parame-
ters results in a small decline in excess return. Additionally, we observe that the positive alpha is
not due to the exploitation of momentum or other well-known factors. Furthermore, we find clear
overall reduction in market risk (expressed in beta) by including commodities in the portfolio.
Additionally, all four performance ratios support the use of commodities for this particular data
set, i.e. including seasonality in the scenario generation improves the ratios, which are more
than twice than that of the market, showing that there is direct value in combining commodities
with an equity portfolio. Cornish-Fisher VaR99% of the different models is lower than that of the
market. This reduction in risk is further supported by the size of the maximum drawdown ex-
perienced through the out-of-sample back test, which in all cases takes place during the crash of
the financial markets in 2007. The strategies using the sieve bootstrapping procedure both have
large reductions in Time under Water compared to the corresponding strategies using historical
sample estimates. This evidence suggests that a better use of commodities in the portfolio set-
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ting is obtainable from the improved parameter estimation in environments which are typically
characterized by high inflation.
Overall, our findings support the poor out-of-sample performance observed in the literature
when using parameters estimated directly from historical data. Though, the inclusion of the
seasonal component in the parameter estimation shows that excess returns over the market can
be increased significantly while reducing risk. Furthermore, the maximum Omega ratio model
outperforms the classical tangency mean-variance model, hinting that the incorporation of higher
order moments in the portfolio selection process holds direct economic value.
The two models relying on shieve bootstrapped scenarios both experience higher turnovers com-
pared to the models using sample estimates. The low turnover observed for Omegahist.data and
TPhist.data comes from two large portfolio positions in Gold and Equity, which are held nearly
constant over time. These positions corresponds on average to 64% of the total portfolio over
time. A recent study by Frazzini et al. [2012] finds transactions costs to be much smaller than
previous literature suggests. For the period 1998-2011, their Table II provides mean transactions
costs of 13bps and a median of 10bps. Therefore, the annualized excess return of the models
based on shieve bootstrapping would more than outweigh such trading costs.

Overall, our considered commodity asset universe can be divided into two groups. One con-
sisting of commodities that can be categorized as scarce or non-producible (metals), and another
where availability are strongly connected to demand. The latter group includes commodities
such as Soybean and Live Cattle where a foreseeable future demand can be met with an increase
in production. The first group is often considered as a safe haven in case of financial turmoil.
Especially gold is a notorious choice due to its low correlation with the equity markets. It is
therefore of interest to consider the out-of-sample back test when the four metals are omitted
from the investment universe.

Table 4.5 shows the out-of-sample backtest when Gold, Silver, Platinium, and Copper are
removed from the asset menu. Our results are qualitatively similar when using shieve boot-
strapping. Considering only the strategies using sample estimates from historic returns, we find
that the diversification benefits are preserved in terms of lower beta, higher performance ratios
than the market, and a lower Value-at-Risk. Though, we also observe a larger negative alpha,
meaning that we are in general underperforming the market. The portfolio composition when
using historic returns are now mainly focused on equity with an average fraction of 35%, where
the rest of the capital is divided nearly equally among the commodities, though with a minor
overweight on Live Cattle. From a correlation point of view, the overweight of Live Cattle comes
at no surprise (see Table 4.1), given that this particular commodity has a low correlation with
the equity market, close to that of gold.

Overall, the out-of-sample result indicates that the inclusion of commodities in the traditional
equity portfolio provides additional diversification benefits and gives raise to risk-adjusted excess
returns (alpha). Though, evidence suggests that the inclusion cannot be done naively, and
seasonality and non-normally distributed returns should be considered.
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Market Omegaboot Omegahist.data TPboot TPhist.data
AlphaCAPM (%) 8.11 -3.37 6.86 -3.19
(p.value) (0.00) (0.01) (0.00) ( 0.02)
AlphaFF (%) 9.87 -0.09 8.72 0.17
(p.value) (0.00) (0.94) (0.00) (0.90)
AlphaFFC (%) 10.26 -0.35 9.19 0.00
(p.value) (0.00) (0.79) (0.00) (1.00)
Beta 1.00 0.46 0.69 0.47 0.69
Sharpe ratio 0.30 0.85 0.37 0.81 0.39
Sortino ratio 0.43 1.49 0.56 1.36 0.58
Omega ratio 1.49 2.28 1.65 2.21 1.66
Treynor ratio 4.71 29.55 7.05 26.49 7.35
99% VaR (Cornish-Fisher) -49.18 -44.79 -42.25 -47.15 -42.60
Max Drawdown (%) 54.36 36.55 41.67 38.09 41.84
Max Time under Water (months) 73 40 97 40 89
Skewness -0.92 -0.30 -0.81 -0.62 -0.87
Excess Kurtosis 5.72 5.50 6.35 6.08 6.28
Positive months (%) 62.50 64.44 61.67 63.89 61.11
Average monthly turnover (%) 57.00 6.17 54.53 5.04

Table 4.5: Summary statistics for the out-of-sample back test of the equity market and the
four portfolio strategies (excluding metals). Omega and TP refer to the maximum Omega ratio
portfolio and the tangency mean-variance portfolio, respectively. The prefix following a portfolio
rule indicates the parameter estimation process.

4.7 Conclusion

We provide an extensive in-sample analysis of ten continuous traded commodity futures over
the period 1975 - 2014, and we find that they distinguish significantly from equities in terms of
Sharpe ratio. We further find that most of the considered commodities experience strong seasonal
patterns in their returns. We proposing shieve bootstrapping to address this characteristic, and
illustrate the in-sample diversification benefits of commodities using the tangency mean-variance
model and the maximum Omega ratio model. We further elaborate on the observed benefits, and
extend our analysis to an out-of-sample setting. We find that using sample parameters estimated
directly from historical returns show little or no benefits when combining commodities with a
diversified equity portfolio. Though, when using the shieve bootstrap procedure, the results show
significant excess return over the market, risk reduction, and a high increase in Sharpe ratio,
Sortino ratio, Omega ratio, and Treynor ratio. Hence, if seasonality is considered, there is an
economic benefit of including commodities in the tactical asset allocation.
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Chapter 5

Conclusion, Extensions and
Future Work

This chapter concludes the work presented in this thesis. The major pieces of the work is as
follows. First chapter introduced tactical asset allocation as a concept, and discussed key ele-
ments when applying such strategies within the area of quantitative finance. A special emphasis
is put on the application of stochastic programming to the risk management setting. The second
chapter discussed the problem of parameter uncertainty in connection to the decision-making
and proposed a selection process, whereby a number of assets can be chosen without loosing the
potential for diversification. This enables better estimation of parameters, which in turn leads
to significant out-of-sample excess return. It was suggested that the excess return are explained
by a combination of avoiding sector concentration together with choosing low-beta assets. The
latter relates to the well-documented phenomenon called betting against beta. The third chapter
shows evidence of return predictability following the supply chain of U.S. industry segments, and
illustrate how this market abnormality can be incorporated in a risk management framework to
generate significant out of sample excess return. The fourth chapter looks at a different type of
return predictability and illustrates the benefits of including commodities in an otherwise diver-
sified equity portfolio by providing significant excess returns and risk reduction.
Overall, the empirical results confirmed that it is notoriously difficult to outperform the financial
markets. It was found that in order to successfully apply tactical asset allocation, some mar-
ket abnormality ought to be present to create an advantage over the otherwise efficient market.
Here, econometric models prove to be helpful tools in uncovering such advantages and further
apply them in an empirical setting. Additionally, it was found that deviating from the classi-
cal mean-variance model, and instead focusing on the empirical distribution through stochastic
programming enables an increase in risk adjusted out-of-sample returns, e.g. using Conditional
Value at Risk or Lower partial moments.

5.1 Extensions and Future Work

A number of ideas and natural extensions to the presented papers have been identified in the
course of wokring on this thesis, which have not been further explored due to time limitations.
This section highlights and suggests directions for future work.
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5.1.1 Feature Selection as a Knapsack Problem

The original feature selection algorithm presented in the paper, Feature Selection for Portfolio
Optimization applies a heuristic approach to reduce the number of assets constituting the asset
menu before applying a selected portfolio rule. The sub-universe is constructed by dividing the
considered assets into N groups according to a computed correlation matrix followed by selecting
the assets representing the medoids of each cluster.
The proposed approach for reducing the dimensionality of the asset universe gives rise to two
major questions. First, how do we select an appropriate value for the size of the sub-universe
N, i.e. what is the number of clusters in the data set? As different asset universes are subject
to different levels of concentration risk, a generic approach ought to be defined to support the
decision-making. Second, can an optimal solution be found when constructing the sub-universe,
hereby avoiding the heuristic approach?

Questions 1

A natural initial step towards answering the first question is to examine the marginal increase
in potential diversification when recursively increasing the value of N for N = {2, ...,m}. The
diversification benefits could then be measured using the equally weighted portfolio and the cor-
relation matrix to calculate the average dispersion of the sub-universe. Therefore, the objective
is then to obtain the sub-universe, which provides the largest average dispersion with respect to
the number of assets N . This can be formulated as

maxw>(1− ρi,j)w, (5.1)

where w is the equally weighted portfolio (w = 1/N), and ρi,j is the correlation matrix. Similar to
the Sharpe ratio, which measures the maximum risk-adjusted return, this results in a maximum
size-adjusted dispersed asset universe. The basic premise is illustrated in Figure 5.1 using return
series for the 49 industry portfolios collected from French’s data library. Additionally, this
approach would effectively address the problem of a time-varying correlation structure, where
N cannot be assumed fixed over time, i.e. N would naturally increased or decreased over time
according to the underlying correlation structure.

Question 2

The initial argumentation for using a heuristic method (hierarchical clustering) for solving the
feature selection problem is that it is NP-hard. The problem can be thought of as finding the
longest path of a subset n ∈ N in a simple cycle of an undirected graph. In addition, the problem
can also be represented of as a 0-1 quadratic knapsack problem which can be formulated as

max x>i di,jxj

s.t.

N∑
i

xi = n

x ∈ {0, 1},

where i and j denote the index of different assets, x is a binary decision vector of length N ,
and N is the total number of assets considered in the original asset universe. The parameter d is
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Figure 5.1: Relationship between average dispersion of an asset universe and a number of included
assets. The dot shows the maximum size-adjusted asset universe (N = 8) for the 49 industry
portfolios over the period 1970 - 2013 collected from French’s data library.

a distance matrix of dimension N ×N . The distance is expressed in terms of the correlation δi,j
and computed as 1−δi,j . n is a scalar indication the desired number of assets in the sub-universe
defined by the cardinality constraint. The problem is a quadratic binary optimization problem
and is computationally difficult to solve using modern optimization algorithms. The problem can
effectively be reformulated as a linear binary optimization problem by replacing the term xi · xj
in the objective function with an auxiliary binary variable yij , and introduce a linearization of
the quadratic term, which will provide an identical solution to the original problem. The problem
can then be formulated as

max

N2∑
ij=1

dijyij

s.t.

M∑
i=1

xi = n

xi + xj − 2 · yij ≥ 0

xi + xj − 2 · yij ≤ 1

xi, xj , yij ∈ {0, 1},

where i and j denote the index of different assets, and ij denotes an auxiliary index describing the
relation between asset i and j. dij is a vector holding all values of distance matrix from before,
and is of length 1× (N ·N). If xi, xj and yij are all {0, 1} variables, then these constraints are
equivalent to the constraint yij = xi · xj , e.g. if asset i and j is not included in the sub universe,
then constraint 2 forces yij to become zero.

This problem is NP-complete, as it only contains binary variables, and is solvable using
branch-and-bound or similar algorithms. Additionally, as the problem contains only binary
variables, it can be solved to optimality as a linear programming problem using the set partition-
ing technique. Hence, we can transform the linear problem with binary variables into a linear
problem with continuous variables at the expense of increasing the dimensionality of the problem.
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Whether there is any economic value in constructing the sub-universe according to size-
adjusted dispersion, or finding an optimal solution contrary to a heuristic one when constructing
the sub-universe is left for future research.

5.1.2 Regression with Residuals experiencing non-zero Skewness

In the paper Portfolio Selection under Supply Chain Predictability, skewed residuals were en-
countered in the vector autoregressive model when incorporating the predictability from the
supply chain. The skewed residuals rendered the mean-variance model inadequate as it solely
focus on the first and second statistical moments. Instead, the issue was addressed by construct-
ing a portfolio maximizing the STAR ratio, i.e. a ratio similar to the Sharpe ratio, where the
standard deviation is replaced with Conditional Value at Risk. The portfolio rule was selected to
mitigate the tail-loss present in the scenarios derived from the residual distribution. A studen-
tized Breusch-Pagan test indicated that the residuals are homoscedastic and not due to volatility
clustering. Following this observation, two questions arise. First, what is the impact on our
expectations when data experience significant skewness (skewed residuals)? Second, how this
issue can be addressed in the estimation process?

Question 1

We addressed the problem of skewed residuals in the regressions through risk management of
the tail, but the impact of skewness in the underlying stochastic process on our computed ex-
pectations remains unstudied. Today, the usual method for estimating the parameters in linear
regression and autoregressive models is the one of minimizing the sum of squared residuals (OLS),l
i.e. minimizing the variance of the residuals. This approach has the underlying assumption that
the considered data is normally or elliptically distributed. Generally, linear regression can be
written as

y = βX + ε, ε ∼ N (0, σ2) , (5.2)

where y is the dependent (endogenous) variable, X is a (n × k) matrix of k independent (ex-
ogenous) variables, and ε is an error term. We assume that E(ε′ε) = σ2In i.e. ε is i.i.d. In the
case of time series data with negative skewness, minimizing the variance of the residuals leads
to overly optimistic expectations, as we do not account for the tail risk. Financial returns of
equity and bonds usually experience negative skewness. These considerations rise the question
about the severity of this problem when computing expectations of future returns in tactical
asset allocation.

Question 2

The parameter β in a linear regression model can be found by solving the following minimization
problem

min
∑
s

ε2s

s.t. ys =
∑
i

xs,iβi + εs

In many industrial applications, skewness and excess kurtosis can be observed in data, hence, the
adopted estimation approach might yield counter-intuitive parameters as the minimized measure
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is a central statistical moment. This argumentation is similar to some of the critique directed
towards the Sharpe ratio and the mean-variance model. Instead, when estimating parameters in
linear regression one could focus on the upper and lower partial moments present in the residual
distribution. This is similar to optimizing the Omega ratio. Though, instead of maximizing
the upper partial moments and minimizing the lower partial moments, both upper and lower
partial moments have to be minimized for the residual distribution. If we focus on the first
order partial moments, then the estimation process can be carried out by solving a continuous
linear optimization problem. The estimated parameters would then account for skewness and
kurtosis in the expectations, instead of solely focusing on the first and second central moments.
Additionally, in the case of elliptically distributed data, the problem would conform to that of
minimizing the variance (OLS). The estimation process can be formulated as

max − 1

S

∑
s

ε+s

min
1

S

∑
s

ε−s

s.t. ys =
∑
i

xs,iβi + ε+s − ε−s

ε+s , ε
−
s ≥ 0,

where s is a time index and i denotes the exogenous variables. ε+s and ε−s are the positive and
negative residuals, respectively, where εs = ε+s − ε−s . The first part of the objective function
maximizes the negative first order upper partial moment, which is similar to minimizing it. The
second part of the objective function minimizes the first order lower partial moment. The bi-
objective formulation can be defined as a ratio maximization model

max

− 1
S

∑
s
ε+s

1
S

∑
s
ε−s

(5.3)

This ratio maximization problem can in turn be formulated as a single continuous problem using
fractional programming for a given desired threshold level τ . A natural value for τ is zero, as this
value indicates the threshold level between the upper and lower part of the residual distribution.
τ then corresponds to the mean of the residual distribution. The fractional program can be
formulates as

max − 1

S

∑
s

ε+s − τz

s.t.
1

S

∑
s

ε−s − τz = 1

ys =
∑
i

xs,iβi + ε+s − ε−s

ε+s , ε
−
s ≥ 0,

where the parameters βi have to be rescaled back to the original decision space by dividing them
by the scaling variable τ , i.e. βi/τ = β∗i . This approach could potentially address the skewness in
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the parameters and yield better sample estimates of the underlying stochastic process. Whether
it holds any significant value in portfolio management and tactical asset allocation is left for
future research.

5.2 General Conclusion

This thesis focuses on the challenges faced by decision-makers when implementing tactical asset
allocation (TTA) strategies in a quantitative setting. We have developed a number of optimiza-
tion models that can be used either by alternative investment companies, hedge funds or mutual
funds whose performance is often evaluated and compared to a well-defined benchmark. Hence,
they have a direct incentive to resort to active portfolio management.
The numerical results of the thesis indicate that active management using tactical asset alloca-
tion does have long-term value for an investor, and that it is possible to outperform a passive
index strategy by focusing on short-term market inefficiencies. Furthermore, we provide evidence
for that constructing optimal portfolios with the means of stochastic programming enables bet-
ter decision-making than the traditional deterministic mean-variance model. The mean-variance
model is subject to criticism due to its poor out-of-sample performance, which among other
things is caused by parameter uncertainty in the estimated parameters. We find that machine
learning techniques can support portfolio optimization by pre-processing data and help improv-
ing the focus on core assets constituting an optimal investment portfolio. We assess these benefits
using five prominent asset allocation models, among others the mean-variance model. We show
that by guiding the asset allocation through a reduction of the asset menu while preserving the
potential for diversification, enables significant excess returns. We confirm these findings through
various robustness checks to ensure that the results were not driven by a couple of outliers. The
proposed tool does not only hold value for purely quantitative investment strategies, but can also
help asset managers relying on discretionary or technical analysis. In particular, the tool could
potentially support the managerial decision-process of selecting a number of assets for further
analysis out of the vast amount of financial instruments available today.

In general, TAA strategies rely on exploiting temporary market inefficiencies to generate
excess returns over a market or benchmark. One such inefficiency is the cross-industry pre-
dictability, caused by the phenomenon of some industries returns leading those of others. We
ascribe this inefficiency to the limited information processing of the market and the natural re-
quest and acquisition of goods and services among industries. We show that this pattern can
be exploited to create excess return, and that the advantage disappears if the information about
autocorrelation and cross-autocorrelation is neglected in the asset allocation process. Addition-
ally, we find that the residuals of our forecasts experienced skewness making the mean-variance
model inadequate. Instead, we use stochastic programming to optimize the STAR ratio which
specifically target the tail risk. Overall, the findings illustrate that if the advantage over the
market is removed (e.g. information about industry segments relations to each other), then the
increased trading associated with tactical asset allocation is not necessarily rewarded. Hence,
asset managers seeking to apply TAA should constantly be aware of the primers that driver their
excess returns.

Finally, we find that asset managers can harvest short-term benefits from tactically combining
commodities with a diversified equity portfolio in terms of improved risk adjusted returns and
excess returns. Commodities experience low correlation to equity, and therefore serve as a natural
protection against turmoil in the stock markets. We find that most commodities experience low
average returns and risk adjusted returns compared to equity along with seasonal patterns in
their return profiles, which makes them less desirable for a buy-and-hold investor. On the other
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hand, tactical asset allocation strategies can exploit these seasonal patterns to improve alpha
and reduce market risk of an equity strategy. Furthermore, we find that when using stochastic
programming to minimize the lower partial moments of a commodity/equity portfolio, we are
able to further improve the results compared to the deterministic mean-variance portfolio.

Overall, tactical asset allocation using stochastic programming can provide long-term value
for an investor by generating statistically significant excess returns and higher risk-adjusted
returns compared to an underlying market. Though, the benefits come at the expense of a high
level of complexity in the investment strategy making it difficult to apply for most fund managers
and with the inherent risk that the profitability might disappear over time as the traded market
becomes more efficient.

Most pension funds, endowment funds, and other institutional investors allocate their capital
to long-term strategic positions to construct broadly diversified portfolios. Here, TAA strategies
can add value as a part of the overall investment policy, if designed with the appropriate rigor to
overcome the significant risk factors and obstacles associated with the strategy. The value that
TAA can provide for this category of investors is two-fold. First, the returns of a well-executed
tactical asset strategy can help to improve the overall return profile of the investment policy.
Second, TAA strategies often experience low correlation with the traditional markets. The latter
is especially the case when shorting is included as part of the TAA strategy. This means that
TAA can not only be used for increasing the overall return for an industrial investor, but also
be used for the purpose of diversification to reduce risk.
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